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0.1 Preface

In subtitling this booklet a “mini course”, I am reminded of the old joke known as “We sell fresh fish

here”. But the connection between the subtitle and the proverbial sign at the market is more one of

contrast than of analogy. Indeed, in the latter it was the superfluity of the sign what counted, whereas

in the former it is its inaccuracy. Both words, “mini” and “course”, are patently inaccurate. That this is

anything but “mini” should be clear from the number of printed pages, closer to eight dozen than to two.

Moreover, this is not a “course” but a haphazard collection of geometrically sounding topics. To make

matters worse, I am not a differential geometer but an occasional user of the discipline. Should I then

take the sign down and, outdoing the fishmonger, close the fish stand altogether? While considering the

proper course of action, I find myself contemplating in despair the frightening scenario of the possible

stature of the audience, consisting of active scientists gathered for a workshop on the applications of

differential geometry to continuum mechanics. I should take the sign down, close shop and become a

potential buyer rather than a seller.

Naturally, nothing of the sort is going to happen and I will do my duty. To enliven somewhat the

enterprise, I decided to organize the material in a somewhat non-standard fashion, ascending first rather

fast to increasingly complex algebraic and topologic structures without involving differentiability. This

approach allows me to talk about fibre bundles and groupoids and their applications in a qualitative

manner invoking only topological concepts. This material occupies the first two chapters. The last two

chapters are addressed to the survivors of the first two. It is hoped that the motivation will be by then

strong enough to endure the details brought about by the differential structure. Much of the material is
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recycled from previous work, so that the fish is not even fresh! But I have attempted to make up for this

peccadillo by preserving only the essential elements and reordering the material in the manner alluded

to above.
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Chapter 1

Topological constructs

1.1 Topological spaces

Physical theory has imposed on us the need for the notion of a continuum. Indeed, more than two

millennia ago, the great magister said that space is “infinitely divisible into parts, themselves infinitely

divisible”. He also established that space has “three dimensions, by which all bodies are bounded”.

Whatever else may be wrong in Aristotle, at least when it comes to this basic notion he got it right. Fast-

forward to the early twentieth century to find mathematicians (Riesz, Hausdorff, Kuratowski) tackling

and solving the following question: What is the minimal structure that a set S must possess to sustain

the notions of nearness and continuity? The answer is, of course, a topology. The key is provided by

the identification of certain subsets of S as being open. This identification must satisfy three conditions,

which are ultimately abstracted from the common notion of open set in Rn
:

(1) The null set ∅ and the total set S are open.

(2) Any arbitrary union of open subsets is open.

(3) The intersection of a finite number of open subsets is open.

The set S is then said to have been endowed with a topology or to be a topological space.

A function f : S → T is continuous if inverse images of open subsets in T are open in S. This definition

can be shown to be equivalent to the usual definition when particularized to a function f : Rm → Rn
.

But does a topological space look like Rn
in all respects? Not at all. In particular, the second feature

of Aristotle’s conception of space is missing, namely its fixed local dimensionality. To introduce this

notion, we can get inspiration from Cartography: although the surface of the Earth cannot be mapped

continuously in one piece onto the plane R2
, it can be so represented in a piecewise fashion. To formalize

this general idea, we need a few straightforward definitions.

Two topological spaces, S and T , are said to be homeomorphic, if there exists a continuous bijection

φ : S → T (called a homeomorphism) whose inverse is continuous. A neighbourhood of a point p ∈ S is

any open subset Up ⊂ S such that p ∈ Up. A topological space S is said to be a Hausdorff space if for

any two points a, b ∈ S there exist respective disjoint neighbourhoods, namely: Ua ∩ Ub = ∅.

9
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1.2 Topological manifolds

We are now in a position to provide the following definition of a topological manifold:1

Definition 1.2.1 An n-dimensional topological manifold M is a Hausdorff space each of whose points

has a neighbourhood homeomorphic to (an open set in) Rn
.

An open cover of a topological space S is a collection of open sets whose union is the total space S. It

follows from Definition 1.2.1 that for a topological manifold there exists an open cover each of whose

elements is homeomorphic to an open set of Rn
. If we denote by Uα the generic constituent of the open

cover and by φα the corresponding homeomorphism, where α denotes a running index, we can identify the

pair (Uα, φα) with a coordinate chart. The collection of all these pairs is called an atlas of the topological

manifold.

The terminology of coordinate charts arises from the fact that a chart introduces a local coordinate system.

More specifically, the homeomorphism φα : Uα → φα(Uα) ⊂ Rn
assigns to each point p ∈ Uα an ordered

n-tuple (x1(p), ..., xn(p)), called the local coordinates of p.

Whenever two charts, (Uα, φα) and (Uβ , φβ), have a non-empty intersection, we define the transition

function φαβ as:

φαβ = φβ ◦ φ−1α : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ). (2.1)

Each transition function is a homeomorphism between open sets of Rn
. The inverse of φαβ is the transition

function φβα = φ−1αβ = φα ◦ φ−1β . Denoting by xi and yi (i = 1, ..., n), respectively, the local coordinates

of Uα and Uβ , a transition function boils down to the specification of n continuous and continuously

invertible real functions of the form:

yi = yi(x1, ..., xn), i = 1, ..., n. (2.2)

1.2.1 Maps and their representations

IfM and N are topological manifolds of dimensions m and n, respectively, a map f :M→N is contin-

uous if it is a continuous map between the underlying topological spaces. A nice feature of topological

manifolds, as opposed to general topological spaces, is the possibility of representing continuous maps

locally as real functions of real variables. Let p ∈ M and denote q = f(p) ∈ N , as shown in Figure 1.1.

By continuity, we can always choose a chart (U , φ) containing p such that its image f(U) is contained in

a chart (V, ψ) containing q. The map:

f̂ = ψ ◦ f ◦ φ−1 : φ(U)→ ψ(V) (2.3)

maps an open set in Rm
to an open set in Rn

. This continuous map f̂ is the local coordinate representation

of f in the coordinate charts chosen.

1.3 Topological groups

Recall that a group is a set G endowed with a binary associative internal operation, called group multi-

plication or group product, which is usually indicated by simple apposition, namely: if g, h ∈ G then the

1We are leaving out an important technical detail, namely, the existence of a countable basis for the topology.
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Figure 1.1: Representation of a map in two charts

product is gh ∈ G. Associativity means that (gh)k = g(hk), for all g, h, k ∈ G. Moreover, there exists

an identity element e ∈ G such that eg = ge = g for all g ∈ G. Finally, for each g ∈ G there exists an

inverse g−1 ∈ G such that gg−1 = g−1g = e. The identity can be shown to be unique, and so is also

the inverse of each element of the group. If the group operation is also commutative, namely, if gh = hg

for all g, h ∈ G, the group is said to be commutative or Abelian. In this case, it is customary to call the

operation group addition and to indicate it as: g + h. The identity is then called the zero element and is

often denoted as 0. Finally, the inverse of g is denoted as −g. This notation is easy to manipulate as it

is reminiscent of the addition of numbers, which is indeed a particular case.

A subgroup of a group G is a subset H ⊂ G closed under the group operations of multiplication and

inverse. Thus, a subgroup is itself a group.

Given two groups, G1 and G2, a group homomorphism is a map φ : G1 → G2 that preserves the group

multiplication, namely:

φ(gh) = φ(g) φ(h) ∀ g, h ∈ G1, (3.1)

where the multiplications on the left and right-hand sides are, respectively, the group multiplications of

G1 and G2.

The group structure is a purely algebraic concept, whereby nothing is assumed as far as the nature of the

underlying set is concerned. The concept of topological group arises from making such an assumption.

More specifically, a topological group is a topological manifold G with a group structure that is compatible

with the topological structure, namely, such that the multiplication G × G → G and the inversion G → G
are continuous maps.

1.3.1 Group actions

Let G be a group (not necessarily a topological group) and let X be a set (not necessarily a topological

manifold). We say that the group G acts on the right on the set X if for each g ∈ G there is a map

Rg : X → X such that: (i) Re(x) = x for all x ∈ X, where e is the group identity; (ii) Rg ◦ Rh = Rhg

for all g, h ∈ G. When there is no room for confusion, we also use the notation xg for Rg(x). Each of the

maps Rg is a bijection of X. Moreover, Rg−1 = (Rg)
−1. The orbit through x ∈ X is the subset xG of X

consisting of all the elements of X of the form xg, where g ∈ G.
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The action of G on X is said to be effective if the condition Rg(x) = x for every x ∈ X implies g = e.

The action is free if Rg(x) = x for some x ∈ X implies g = e. Finally, the action is transitive if for every

x, y ∈ X there exists g ∈ G such that Rg(x) = y.

In a completely analogous manner, we can say that G acts on the left on X if for each g ∈ G there is a

map Lg : X → X such that: (i) Le(x) = x for all x ∈ X, where e is the group identity; (ii) Lg ◦Lh = Lgh

for all g, h ∈ G. The order of the composition is the essential difference between a right and a left action.

We may also use the notation gx for Lg(x).

The notion of group action can naturally be applied when G is a topological group. In this instance, a case

of particular interest is that for which the set on which G acts is a topological manifold and the induced

bijections are transformations of this manifold. A transformation of a manifold M is a homeomorphism

φ : M → M. The definition of the action is then supplemented with a continuity condition. More

explicitly: A topological group G is said to act on the right on a manifold M if:

(1) Every element g ∈ G induces a transformation Rg :M→M.

(2) Rg ◦Rh = Rhg, namely: (ph)g = p(hg) for all g, h ∈ G and p ∈M.

(3) The right action R : G ×M→M is a continuous map. In other words, Rg(p) is continuous in both

variables (g and p).

With these conditions, the topological group G is also called a topological group of transformations of M.

Just as in the general case, we have used the alternative notation pg for Rg(p), with p ∈ M, wherever

convenient. A similar definition can be given for the left action of a topological group on a manifold.

Condition 1 is equivalent to the fact that Re (and Le) are the identity transformation of M. Indeed,

since a transformation is an invertible map, every point p ∈ M can be expressed as qg for some q ∈ M
and some g ∈ G. Using Property (2) of the right action we have: Re(p) = pe = (qg)e = q(ge) = qg = p,

with a similar proof for the left action.

It is convenient to introduce the following (useful, though potentially confusing) notation. We denote

the right action as a map from G ×M to M by the symbol R. Thus, R = R(g, p) has two arguments,

one in the group and the other in the manifold. Fixing, therefore, a particular element g in the group,

we obtain a function of the single variable x which we have already denoted by Rg : M→M. But we

can also fix a particular element p in the manifold and thus obtain another function of the single variable

g. We will denote this function by Rp : G → M. A similar scheme of notation can be adopted for a

left action L. Notice that the image of Rp (respectively Lp) is nothing but the orbit pG (respectively

Gp). The potential for confusion arises when the manifold M happens to coincide with the group G, as

described below. Whenever an ambiguous situation arises, we will resort to the full action function of

two variables.

Recall that a topological group can be both a group and a manifold. Thus, it is not surprising that every

topological group G induces two canonical groups of transformations on itself, one by right action and one

by left action, called, respectively, right translations and left translations of the group. They are defined,

respectively, by: Rg(h) = hg and Lg(h) = gh, with g, h ∈ G, where the right-hand sides are given by

the group multiplication itself. For this reason, it should be clear that these actions are both free (and,

hence, effective) and transitive.
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1.4 Topological fibre bundles

Topological fibre bundles are topological manifolds with extra structure. The points of a fibre bundle

have, as it were, a double allegiance: not only to the manifold itself but also to a smaller entity called a

fibre.

A topological fibre bundle generalizes the idea of a product topological manifold, which we use as a point

of departure. Let two topological manifolds B and F be given. Consider the Cartesian product

C = B × F . (4.1)

The total space C can be shown to be itself a topological manifold,2 whose dimension is the sum of the

dimensions of the base manifold B and the typical fibre F .

We call C a product bundle. It is endowed with two natural projection maps, namely:

pr1 : C −→ B , (4.2)

and

pr2 : C −→ F , (4.3)

which assign to any given pair (b, f) ∈ C its first and second components, b and f , respectively. It is clear

that these two maps, in addition to being surjective, are continuous in the product topology. Indeed, let

U be an open subset of B. We have, by definition of pr1, that pr−11 (U) = U ×F , which is open. A similar

reasoning applies to pr2.

For each b ∈ B the set pr−11 (b) is called the fibre at b, denoted as Cb, which in this case is simply a copy

of F . From this definition it follows that fibres at different points are disjoint sets and that each point

c ∈ C necessarily belongs to a fibre, namely, to Cpr1(c). The fibres can, therefore, also be seen as the

equivalence classes corresponding to the equivalence relation of “having the same first projection”.

Given an atlas in B and an atlas in F , the product of these atlases is an atlas of the product bundle

C. Naturally, as a manifold, C may be endowed with other atlases. Nevertheless, we will always restrict

attention to product atlases, namely, those that emphasize the product nature of the bundle C. In a

product chart, the projections acquire a particularly simple form. Indeed, let xi, i = 1, ...,m = dim(B)

and yα, α = 1, ..., n = dim(F) be coordinate systems for some charts in the base and the fibre, respectively.

Then we have:

pr1 : C −→ B

(xi, yα) 7→ (xi) , (4.4)

and

pr2 : C −→ F

(xi, yα) 7→ (yα) . (4.5)

It follows from this coordinate representation that the projections are continuous surjections.

2Strictly speaking, fibre bundles can be defined using topological spaces, rather than the more specialized topological

manifolds. The topology of the Cartesian product consists of all the possible unions of all possible Cartesian products of

open sets of B with open sets of F , taken in this order.
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We want to proceed now to a more general concept than that of a product bundle just discussed. In

essence, what we want to achieve is the loss of the second projection (pr2), while preserving the first (pr1).

A clear example of the convenience of such a generalization is provided by the concept of space-time. The

ancients (particularly, but not only, Aristotle) seemed to have thought that space and time were absolute

entities existing, as it were, independently of each other. In our terminology, therefore, we would say that

for them space-time was a product bundle with, say, time as the base manifold and space as the fibre.

The physical meaning of pr1 would thus be that of providing the time of occurrence of an event, such as

a collision. Accordingly, two events p and q are simultaneous if pr1(p) = pr1(q). Similarly, since space

is absolute in this vision of the world, the second projection provides information about the location of

an event in absolute space. Thus, two events p and q can be said to have occurred at the same place

(regardless of their times of occurrence) if pr2(p) = pr2(q). The principle of Galilean relativity can be

said to have demolished the second projection. Indeed, unless two events happen to be simultaneous

(a concept only questioned much later by Einstein’s relativity principle), it is impossible, according to

Galileo and Newton, to compare in an absolute way the places at which they occurred. While it is true

that a given observer can make such a judgment, a different observer will in general legitimately disagree.

Herein lies the clue to our generalization, namely, that although the total manifold C is no longer a

product it still looks like a product (albeit a different one) to each observer. This intuitive idea leads to

the following definition.

A fibre bundle with base B, typical fibre F and structure group G (acting effectively on the left on F),

is a manifold C and a continuous surjective bundle-projection map π : C → B such that there exists an

open covering Uα of B and respective local trivializations:

ψα : π−1(Uα) −→ Uα ×F (4.6)

with the property π = pr1 ◦ ψα, as illustrated in the following commutative diagram:

π−1(Uα) -ψα Uα × F

?

pr1

Uα

Q
Q
Q
Q
Qs

π

(4.7)

Moreover, as illustrated in Figure 1.2, whenever b ∈ Uα
⋂
Uβ 6= ∅, the transition maps ψ̃β,α(b) := ψ̃α,b◦ψ̃−1β,b

belong to the structure group G and depend continuously on position throughout the intersection.
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F
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?
ψα

π pr1
b

b

ψβ

ψ̃β,α(b)

Uα︸ ︷︷ ︸
Uβ︸ ︷︷ ︸

Uα︸ ︷︷ ︸
Uβ︸ ︷︷ ︸

Figure 1.2: A general fibre bundle

Consider now, for the same C, B, F , π and G, a different open covering Vβ with local trivializations φβ .

We say that it defines the same fibre bundle as before if, on non-vanishing intersections, the transition
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maps ψ̃α,b ◦ φ̃−1β,b belong to the structure group G and depend continuously on position b throughout the

intersection. The two trivializations are said to be compatible. In this sense, we can say that the union

of the two trivialization coverings becomes itself a new trivialization covering of the fibre bundle. When

there is no room for confusion, a fibre bundle is denoted as a pair (C, π) indicating just the total space and

the projection. An alternative notation is π : C → B. A more complete notation would be (C, π,B,F ,G).

According to the general definition, a fibre bundle is always locally trivializable. In other words, every

point of the base manifold has a neighbourhood such that the restriction of the bundle to this neigh-

bourhood is homeomorphic to its product with the typical fibre. If this property can be extended to the

whole base manifold, that is, if the whole bundle happens to be homeomorphic to the product of the base

times the typical fibre, we say that the bundle is trivial or, more precisely, (globally) trivializable.

The fundamental existence theorem of fibre bundles states that given the manifolds B and F and a

topological group G acting effectively to the left on F , and given, moreover, an open covering Uα of B
and a continuous assignment of an element of G to each point in every non-vanishing intersection of the

covering, then there exists a fibre bundle (C, π) with local trivializations based upon that covering and

with the assigned elements of G as transition maps. Furthermore, any two bundles with this property are

equivalent.

An important application of the fundamental existence theorem is that given a bundle (C, π,B,F ,G), we

can associate to it other bundles with the same base manifold and the same structure group, but with

different typical fibre F ′, in a precise way. Indeed, we can choose a trivialization covering of the given

bundle, calculate the transition maps, and then define the associated bundle (C′, π′,B,F ′,G), modulo an

equivalence, by means of the assertion of the fundamental theorem. A case of particular interest is that

in which the new fibre is identified with the structure group. This gives rise to the so-called associated

principal bundle.

1.4.1 Principal bundles

A principal bundle is a topological fibre bundle for which the typical fibre and the structure group coincide.

As in any other topological bundle, the action of the structure group on the typical fibre is assumed to

be a left action. Accordingly, in a principal bundle the action of the structure group is identified with

the natural (or canonical) left action of the group on itself. The existence of a canonical right action

of a group on itself, on the other hand, is a bonus that can be used to show that in a principal bundle

(P, π,B,G,G) one can define a canonical right action of the structure group on the total space P. By

canonical we mean that this action is independent of the trivialization. Moreover, this canonical right

action is free and fibre-preserving.

The existence of a free right action on a manifold is strong enough to provide an alternative definition of a

principal fibre bundle which, although equivalent to the one just given, has the merit of being independent

of the notion of transition maps. Moreover, once this more elegant and constructive definition has been

secured, a subsidiary definition of the associated (non-principal) bundles becomes available, again without

an explicit mention of the transition maps. Finally, this more abstract definition brings out intrinsically

the nature and meaning of the associated bundles.

Let P be a topological manifold (the total space) and G a topological group (the structure group), and
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let G act freely to the right on P. This means that there exists a continuous map:

Rg : P × G −→ P

(p, g) 7→ Rgp = pg, (4.8)

such that, for all p ∈ P and all g, h ∈ G, we have:

Rghp = RhRgp = pgh,

Rep = p (4.9)

where e is the group identity. The fact that the action is free means that if, for some p ∈ P and some

g ∈ G, Rgp = p, then necessarily g = e. Define now the quotient B = P/G and check that B is a

topological manifold and that the canonical projection πP : P → P/G is continuous. The set π−1P (b) is

called the fibre over b ∈ B.

Recall that an element of the quotient B = P/G is, by definition of quotient, an equivalence class in P by

the action of the group G. In other words, each element b of the quotient (namely, of the base manifold

B) can be regarded as representing an orbit. The projection map assigns to each element of P the orbit

to which it belongs. The fibre over b consists of all the elements of P that belong to the specific orbit

represented by b.

To complete the definition of a principal bundle, we need only to add the condition that P be locally

trivial, namely, that for each b ∈ B, there exists a neighbourhood U ⊂ P such that π−1P (U) is isomorphic

to the product U × G. More precisely, there exists a fibre-preserving homeomorphism:

ψ : π−1P (U) −→ U × G

p 7→ (b, ψ̃b), (4.10)

where b = πP (p), with the additional property that it must be consistent with the group action, namely

(see Figure 1.3):

ψ̃b(pg) = ψ̃b(p)g ∀p ∈ π−1P (U), g ∈ G. (4.11)

This completes the definition of the principal bundle. The right action is fibre-preserving and every fibre

is homeomorphic to G. Moreover, every fibre coincides with an orbit of the right action of G.
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πP pr1
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Figure 1.3: The group consistency condition

1.4.2 Equivalence of both definitions of a principal bundle

Consider a principal fibre bundle P, with structure group G, defined via the free right action of G on P .

Let two local trivializations, (U , ψ) and (V, φ), be given and let b ∈ U
⋂
V. We want to show that for each
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point b ∈ B the restricted map φ̃b ◦ ψ̃−1b : G → G is in fact equivalent to the left action of a fixed element

a ∈ G. Let g ∈ G. Since φ̃b ◦ ψ̃−1b (g) belongs to G and since the left action of G on itself is transitive,

there exists a unique a ∈ G such that:

φ̃b ◦ ψ̃−1b (g) = Lag = ag. (4.12)

We need to prove that this a ∈ G is independent of g. Let, therefore, h ∈ G be some other point in the

typical fibre. By transitivity of the right action there exists a unique c ∈ G such that h = gc. Therefore,

φ̃b ◦ ψ̃−1b (h) = φ̃b ◦ ψ̃−1b (gc) = φ̃b[Rcψ̃
−1
b (g)]

= Rc[φ̃b ◦ ψ̃−1b (g)] = RcLa(g) = LaRcg = Lah. (4.13)

The crucial step in this chain is the commutation of the trivializations φ̃b and ψ̃b with the right action

Rc, namely, the consistency condition. The last result clearly shows that transition maps can indeed

be defined and that they belong to the structure group, as required by the standard definition. The

equivalence of both definitions follows now from the fundamental existence theorem.

1.4.3 Cross sections

A cross section σ of a fibre bundle (C, π,B,F ,G) is a (continuous) map:

σ : B −→ C (4.14)

such that π ◦ σ = idB, as shown in the following commutative diagram:

B -σ
C

?

π

B

Q
Q
Q
Q
Qs

idB

(4.15)

A cross section is thus nothing but a continuous assignment, to each point b in the base manifold, of an

element of its fibre Cb. At this point, it is appropriate to point out that one of the most useful physical

interpretations of fibre bundles consists of regarding the typical fibre as a set of objects of some type

(such as vectors, tensors, frames, group elements, and so on) which are paired with each of the points

of an underlying continuum, namely the base manifold. With this interpretation in mind, we observe

that a cross section corresponds precisely to the notion of a physical field. Indeed, a cross section is a

continuous assignment of an element of the fibre (a vector, a tensor, a frame, a group element) to each

point of the base (the underlying continuum).

It is important to realize that not all fibre bundles admit continuous cross sections. Globally trivializable

fibre bundles, on the other hand, always do. Indeed, let (B, ψ) be a global trivialization of a globally

trivializable fibre bundle and let a denote a fixed element of the typical fibre F . Then, the function

defined as σ(b) = ψ̃−1b (a) is a cross section. One should not think, however, that this sufficient condition

is also necessary for the existence of a cross section. As an intuitive example to the contrary, one can take

the Moebius band, which is a non-trivializable bundle over the circle. Any continuous curve drawn on

the original strip such that its end points are symmetrically arranged will do the job as a cross section,
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6

?
1

2 1

2

Figure 1.4: Cross sections of a Moebius band

as shown in Figure 1.4. (Notice, however, that any two such cross sections will end up having at least

one point in common!)

The previous remark notwithstanding, we can prove that, in the case of principal bundles, global trivial-

izability is equivalent to the existence of a cross section. We need to prove just the “only if” part, since

the “if” part is always true, as we have shown in the previous remark. Assume, therefore, that a given

principal bundle (P, π,B,G,G) admits a cross section σ : B → P. The proof follows from the transitivity

of the right action of G on P. For, let p ∈ P. By the transitivity of the right action on each fibre, there

exists a unique g(p) ∈ G such that p = Rg(p) ◦ σ ◦ πP (p). Define the map:

ψ : P −→ B × G

p 7→ (πP (p), g(p)). (4.16)

It is not difficult to verify that this map is a global trivialization of the principal bundle, satisfying the

group consistency condition. A nice way to picture this situation (Figure 1.5) is to imagine that the given

cross section σ is translated by the right action of the group to give rise to a family of cross sections

Rg ◦ σ. Since the action is effective, no two such cross sections will intersect (provided just g is not

the group identity). Moreover, since the action is transitive on fibres, every point of the fibre bundle

will belong to one (and only one) translated cross section. In other words, we have a family of cross

sections, parametrized by the structure group, that completely spans the total space. This is, naturally,

tantamount to a global trivialization.
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Figure 1.5: Translation of a cross section by the right action

An interesting corollary of this theorem is that, since the trivialization coverings of all associated bundles

are the same, a fibre bundle is trivializable if, and only if, its associated principal bundle admits a cross

section. This result is just one illustration of the assertion to the effect that working with the associated

principal bundle often simplifies and helps to understand the mathematical picture.
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1.5 Topological groupoids

The abstract notion of a groupoid emerges as the common structure underlying many constructions

that arise naturally in a variety of apparently disconnected applications in algebra, topology, geometry,

differential equations, numerical analysis and practically every branch of mathematics. In a restricted

way, it can be seen as a generalization of the notion of group, but it is better to understand it as an

important mathematical concept in its own right.3

A groupoid consists of a total set Z, a base set B, two (“projection”) surjective maps:

α : Z −→ B and β : Z −→ B (5.1)

called, respectively, the source and the target maps, and a binary operation (“composition”) defined only

for those ordered pairs (y, z) ∈ Z × Z such that:

α(z) = β(y). (5.2)

This operation (usually indicated just by reverse apposition of the operands) must satisfy the following

properties:

(1) Associativity:

(xy)z = x(yz), (5.3)

whenever either product is defined;

(2) Existence of identities: for each b ∈ B there exists an element idb ∈ Z, called the identity at b, such

that z idb = z whenever α(z) = b, and idb z = z whenever β(z) = b;

(3) Existence of inverse: for each z ∈ Z there exists a (unique) inverse z−1 such that

zz−1 = idβ(z) and z−1z = idα(z). (5.4)

It follows from this definition that to each ordered pair (a, b) of elements of B one can associate a definite

subset Zab of Z, namely the subset: {z ∈ Z | β(z) = b, α(z) = a}. It is clear that these sets (some

of which may be empty) are disjoint and that their union is equal to Z. It is also clear that the various

identities are elements of subsets of the form Zbb. It is not difficult to show that each set of the form Zbb
is actually a group.

A useful way to think of a groupoid is as a collection of symbols (a, b, c, ...) and arrows (x, y, z, ...)

connecting some of them. The symbols correspond to the elements of the base set B, while the arrows

correspond to the elements of the total set Z. The tail and tip of an arrow z correspond to the source

α(z) and the target β(z), respectively. Two arrows z and y can be composed if, and only if, the tip of

the first ends where the tail of the second begins. The result is an arrow yz whose tail is the tail of z and

3For a thorough treatment of groupoids see: MacKenzie K (1987), Lie Groupoids and Lie Algebroids in Differential Ge-

ometry, London Mathematical Society Lecture Note Series 124, Cambridge University Press. An informal and illuminating

explanation can be found in: Weinstein A (2000), Groupoids: Unifying Internal and External Symmetry. A tour through

Examples, Notices of the American Mathematical Society 43, 744-752.
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whose tip is the tip of y:

c c c� �� y z

yz

a = α(z) = α(yz)α(y) = b = β(z)β(y) = β(yz) = c

For this picture to correspond more or less exactly to the more formal definition of a groupoid, however,

we have to add the proviso that for each arrow z connecting point a to point b, there exists an “inverse”

arrow z−1 connecting point b with point a. It is also very important to bear in mind that there is no

need for a given pair of points to be connected by one or more arrows. Some may be connected and some

may not. In fact, an extreme case can occur whereby no two (different) points are thus connected. In

this extreme case, the set Z becomes simply the disjoint union of the groups Zbb.

Box 1.5.1 Some examples of groupoids

To show the versatility of the concept of groupoid, we list a few examples drawn from different areas

of Mathematics.

(1) The product groupoid: Given a set B, the Cartesian product B × B is a groupoid with α = pr1

and β = pr2.

(2) The general linear groupoid GL(R): Take as the total set the collection of all non-singular square

matrices of all orders. The base space will be taken as the natural numbers. The binary operation

is matrix multiplication. We can see that this groupoid is nothing but the disjoint union of all

the general linear groups GL(n;R).

(3) The fundamental groupoid: Let T be a topological space. For each pair of points a, b ∈ T we

consider the collection of all continuous curves starting at a and ending at b. We partition this

set into equivalence classes, two curves being considered equivalent if the are homotopica, and

we define Zab as the quotient set (namely, the set of these equivalence classes). The composition

of curves is done just like with the arrows of our pictorial description. [Question: why is the

partition into equivalence classes needed?]

aTwo curves starting and ending at the same points are homotopic if, keeping these ends fixed, it is possible to

transform continuously one curve into the other.

One can prove that if Zab 6= ∅, then the groups Zaa and Zbb are conjugate, and the conjugation between

them is achieved by any element of Zab. Moreover, the set Zab is spanned completely by composing any

one of its elements with Zaa or with Zbb (to the right or to the left, of course).

A groupoid is said to be transitive if for each pair of points a, b ∈ B there exists at least one element of

the total set with a and b as the source and target points, respectively. In other words, a groupoid is

transitive if, and only if, Zab 6= ∅ ∀(a, b) ∈ B × B. In a transitive groupoid all the local groups Zbb are

mutually conjugate.

A groupoid is a topological groupoid if the total set Z and the base set B are topological manifolds, the

projections α and β are continuous, and so are the operations of composition and of inverse. It follows

from the definition that each of the sets Zbb is a topological group.
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1.5.1 From groupoids to principal bundles

Let b ∈ B be a fixed point in the base manifold of a transitive topological groupoid Z. Consider the

subset of the total set Z formed by the disjoint union Z̃b of all the sets Zbx,∀x ∈ B. The elements z̃ of

this set have the property α(z̃) = b. The group Zbb has a natural effective right action on Z̃b, as can

be verified directly by composition. Moreover, two elements of Z̃b that differ by the right action of an

element of this group must have the same target. In other words, the equivalence classes corresponding

to this action consist precisely of the sets Zbx and, therefore, the quotient set is precisely the manifold

B. We are thus led to a principal bundle with total space Z̃b, structure group Zbb and projection β (or,

rather, the restriction of β to Z̃b).
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Figure 1.6: Schematic representation of a transitive groupoid Z (left) and the induced principal bundle

Z̃b (right), whose fibres are depicted as pairs of arrows projecting on the base manifold (a, b, c)

If we were to start from a different point, c say, of B, the previous construction would lead to a principal

bundle whose structure group Zcc is conjugate to Zbb, and it is not difficult to show that the two principal

bundles are isomorphic. We see, therefore, that giving a transitive topological groupoid is tantamount

to giving an equivalence class of isomorphic principal bundles, each one conveying the same information

as the groupoid. The choice of the reference point of departure is somewhat analogous to the choice of

a basis in a vector space. No information is lost, but there is a certain loss of objectivity, in the sense

that one is no longer working with the actual objects but rather with their representation in the chosen

reference.

1.5.2 From principal bundles to groupoids

Somewhat more surprising than the previous passage from a groupoid to any one of its representative

principal bundles is the fact that, given an arbitrary principal bundle (P, πP ,B,G,G), one can construct

a groupoid of which it is a representative. Indeed, define the quotient space Z = (P ×P)/G as the total

set of the intended groupoid. The reason for this choice is clear: we want to assign an arrow between two

points of the base manifold to each diffeomorphism between their fibres which is consistent with the right

action of the structure group. More precisely, let a, b ∈ B. The diffeomorphisms z : π−1P (a)→ π−1P (b) we

are referring to are those satisfying:

z(pg) = z(p)g, ∀p ∈ π−1P (a), g ∈ G. (5.5)
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These are exactly the diffeomorphisms generated by pairing any two points p ∈ π−1P (a), q ∈ π−1P (b)

(i.e., one from each fibre) and then assigning to pg the point qg. As g runs through the group the

diffeomorphism is generated. In other words, we assign the same arrow to the pair (p, q) ∈ P × P as we

assign to (pg, qg). Hence the quotient Z = (P × P)/G.

The remainder of the construction is straightforward. The inverse of the arrow with the pair (p, q) as

representative, is the arrow represented by the pair (q, p). The identity at b ∈ B is represented by any

pair (p, p) with πP (p) = b. The source and target maps are simply: α(p, q) = πP (p) and β(p, q) = πP (q).

Finally, the composition of arrows is effected by composition of maps. More carefully, let (p, q) be an

arrow between a and b, and let (r, s) be an arrow between b and c, with a, b, c ∈ B. We proceed to change

the representative of the equivalence class (r, s) by applying the right action of the unique g ∈ G such

that rg = q. We obtain the new representative of the same arrow as (q, sg). The successive application

of the arrows is the arrow from a to c whose representative is the pair (p, sg) (the common intermediate

element being cancelled out, as it were).



Chapter 2

Physical illustrations

2.1 The configuration space of a mechanical system

Lagrange’s (1736-1813) conception of Mechanics was purportedly purely analytical. In the Preface to the

first edition of his Mécanique Analytique1 he explicitly states that: “On ne trouvera point de Figures dans

cet Ouvrage. Les méthodes que j’y expose ne demandent ni constructions, ni raisonnements géométriques

ou méchaniques, mais seulemnet des opérations algébriques, assujeties à une marche régulière et uniforme.

Ceux qui aiment l’Analyse verront avec plaisir la Méchanique en devenir une nouvelle branche, et me

sauront gré d’en avoir étendu ainsi le domain.” Nevertheless, it is not an exaggeration to say that in

laying down the foundations of Analytical Mechanics Lagrange was actually inaugurating the differential

geometric approach to Physics. In Lagrange’s view, a mechanical system was characterized by a finite

number n of degrees of freedom to each of which a generalized coordinate is assigned. A configuration of

the system is thus identified with an ordered n-tuple of real numbers. But, is this assignment unique?

And, anyway, what are these numbers coordinates of?

Consider the classical example of a (rigid) double pendulum oscillating in a vertical plane under gravity,

as shown in Figure 2.1. Clearly, this system can be characterized by two independent degrees of freedom.

If we were to adopt as generalized coordinates the horizontal displacements, x1 and x2, of the two

masses from, say, the vertical line through the point of suspension, we would find that to an arbitrary

combination of these two numbers, there may correspond as many as 4 different configurations. If, to

avoid this problem, we were to adopt as generalized coordinates the angular deviations θ1 and θ2, we

would find that a given configuration can be characterized by an infinite number of combinations of values

of these coordinates, due to the additive freedom of 2π. If we attempt to solve this problem by limiting

the range of these coordinates to the interval [0, 2π), we lose continuity of the representation (since two

neighbouring configurations would correspond to very distant values of the coordinates).

Let us, therefore, go against Lagrange’s own advice and attempt to draw a mental picture of the geometry

of the situation. Since the first mass (attached to the main point of suspension) is constrained to

move along a circle, thus constituting a simple pendulum, we conclude that its configurations can be

homeomorphically mapped onto a circumference (or the perimeter of a square or of any other closed

curve in the plane). We say that this circumference is the configuration space of a simple pendulum.

1Lagrange (1788), Mécanique Analitique [sic], chez la Veuve Desaint, Libraire, Paris.
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Now, the second mass can describe a circumference around any position of the first. It is not difficult to

conclude that the configuration space of the double pendulum is given by the surface of a torus. Now

that this basic geometric (topological) question has been settled, we realize that an atlas of this torus

must consist of several charts. But the central conceptual gain of the geometrical approach is that the

configuration space of a mechanical system, whose configurations are defined with continuity in mind,

can be faithfully represented by a unique topological manifold, up to a homeomorphism.

q

u
u

1

1

θ1

θ2

m1

m2 Q

Figure 2.1: The plane double pendulum and its configuration manifold

2.2 Local symmetries of constitutive laws

Think of a material point as a small (infinitesimal) die in R3
that can be deformed into small arbitrary

parallelepipeds by means of regular linear maps. These maps are, therefore, represented by non-singular

matrices F. Consider now a scalar function of state, or constitutive function ψ, such as a stored elastic

energy, that depends exclusively on F via a constitutive equation or constitutive law

ψ = ψ(F). (2.1)

The general linear group GL(3;R), that is, the (topological) group of all non-singular 3× 3 real matrices

G, acts to the right on the collection F of all possible constitutive equations of the form (2.1) according

to the following prescription:

RGψ(F) = ψ(FG). (2.2)

An element G ∈ GL(3;R) is a symmetry of the constitutive law ψ if

RGψ = ψ, (2.3)

or, more explicitly, if

ψ(FG) = ψ(F) (2.4)

identically for all F ∈ GL(3;R). We also say that the constitutive equation ψ = ψ(F) is invariant under

the right action of the element G of the general linear group GL(3;R). It is not difficult to show that the

collection of symmetries of a given constitutive law ψ is a subgroup Gψ of GL(3;R), called the material

symmetry group of ψ.
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Clearly, the unit element of GL(3;R), namely the unit matrix I, is a trivial symmetry of all constitutive

laws. On the other hand, it is not difficult to construct examples of constitutive laws that have non-

trivial symmetries. For example, any function of the determinant of F is invariant under the action of

any matrix G with unit determinant.

We ask now whether the right action of GL(3;R) on F is transitive. The answer is clearly negative,

since otherwise all constitutive equations would be identical to each other. Is the action free? Again, the

answer is negative since, as shown above, there exist constitutive equations with non-trivial symmetries.

Finally, one might have expected that the action be at least effective. That would have meant that if an

element G ∈ GL(3;R) leaves all constitutive laws invariant then it must necessarily be the group unit I.

It can be shown, however, that if the set F is restricted to those constitutive equations abiding by the

general principle of material frame indifference, then all constitutive laws are invariant under the action

of −I, in which case the action is not even effective.

2.3 Space-time

2.3.1 Aristotelian space-time

We may think separately of time as a 1-dimensional manifold Z (the time line) and of space as a 3-

dimensional manifold P. Nevertheless, as soon as we try to integrate these two entities into a single

space-time manifold S, whose points represent events, we realize that there are several possibilities. The

first possibility that comes to mind is what we may call Aristotelian space-time, whereby time and space

have independent and absolute meanings. Mathematically, this idea corresponds to the product:

SA = Z × P, (3.1)

where × denotes the Cartesian product. Recall that the Cartesian product of two sets is the set formed

by all ordered pairs such that the first element of the pair belongs to the first set and the second element

belongs to the second set. Thus, the elements s of SA, namely the events, are ordered pairs of the form

(t, p), where t ∈ Z and p ∈ P. In other words, for any given s ∈ SA, we can determine independently its

corresponding temporal and spatial components. In mathematical terms, we say that the 4-dimensional

(product) manifold SA is endowed with two projection maps:

π1 : SA −→ Z, (3.2)

and

π2 : SA −→ P, (3.3)

defined, respectively, by:

π1(s) = π1(t, p) := t, (3.4)

and

π2(s) = π2(t, p) := p. (3.5)

2.3.2 Galilean space-time

The physical meaning of the existence of these two natural projections is that any observer can tell

independently whether two events are simultaneous and whether or not (regardless of simultaneity) they
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have taken place at the same location in space. According to the principle of Galilean relativity, however,

this is not the case. Two different observers agree, indeed, on the issue of simultaneity. They can tell

unequivocally, for instance, whether or not two light flashes occurred at the same time and, if not, which

preceded which and by how much. Nevertheless, in the case of two non-simultaneous events, they will in

general disagree on the issue of position. For example, an observer carrying a pulsating flashlight, will

interpret successive flashes as happening always ‘here’, while an observer receding uniformly from the first

will reckon the successive flashes as happening farther and farther away as time goes on. Mathematically,

this means that we would like to get rid of the non-physical second projection (the spatial one) while

preserving the first projection.

We would like, accordingly, to construct an entity that looks like SA for each observer, but which is a

different version of SA, so to speak, for different observers. This delicate issue can be handled as follows.

We define space-time as a 4-dimensional manifold S endowed with a projection map:

π : S −→ Z, (3.6)

together with a collection of smooth and (smoothly) invertible maps:

φ : S −→ SA, (3.7)

onto the naive Aristotelian space-time SA. Each of these maps, called a trivialization and potentially

representing an observer, cannot be completely arbitrary, in a sense that we will now explain.

Fix a particular point of time t ∈ Z and consider the inverse image St = π−1({t}). We call St the fibre

of S at t. Recall that the inverse image of a subset of the range of a function is the collection of all the

points in its domain that are mapped to points in that subset. With this definition in mind, the meaning

of St is the collection of all events that may happen at time t. We clearly want this collection to be the

same for all observers, a fact guaranteed by the existence of the projection map π. Different observers

will only differ in that they will attribute possibly different locations to events in this fibre. Therefore,

we want the maps φ to be fibre preserving in the sense that each fibre of S is mapped to one and the

same fibre in SA. In other words, we don’t want to mix in any way whatsoever the concepts of space and

time. We require, therefore, that the image of each fibre in S by each possible φ be exactly equal to a

fibre of SA. More precisely, for each t ∈ Z we insist that:

φ(St) = π−11 ({t}). (3.8)

A manifold S endowed with a projection π onto another manifold Z (called the base manifold) and with

a collection of smooth invertible fibre-preserving maps onto a product manifold SA (of the base times

another manifold P) is known as a fibre bundle. Note that the fibres of SA by π1 are all exact copies of

P. We say that P is the typical fibre of S. A suggestive pictorial representation of these concepts is given

in Figure 2.2.

Notice in Figure 2.2 how the fibres are shown hovering above (rather than touching) the base manifold.

This device is used to suggest that, although each fibre is assigned to a specific point of the base manifold,

the fibre and the base do not have any points in common, nor is there any preferential point in the fibre

(such as a zero). Quite apart from the ability of Differential Geometry to elicit simple mental pictures

to describe very complex objects, such as a fibre bundle, another important feature is that it uses the

minimal amount of structure necessary. In the case of the space-time bundle, for instance, notice that we

have not made any mention of the fact that there is a way to measure distances in space and a way to

measure time intervals. In other words, what we have presented is what might be called a proto-Galilean
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Figure 2.2: A fibre bundle

space-time, where the notion of simultaneity has a physical (and geometrical) meaning. Beyond that, we

are now in a position to impose further structure either in the base manifold, or in the typical fibre, or in

both. Similarly, restrictions can be placed on the maps φ (governing the change of observers). In classical

Galilean space-time, the fibre P has the structure of an affine space (roughly a vector space without an

origin). Moreover, this vector space has a distinguished dot product, allowing to measure lengths and

angles. Such an affine space is called a Euclidean space. The time manifold Z is assumed to have a

Euclidean structure as well, albeit one-dimensional. Physically, these structures mean that there is an

observer-invariant way to measure distances and angles in space (at a given time) and that there is also

an observer-invariant way to measure intervals of time. We say, accordingly, that Galilean space-time is

an affine bundle. In such a fibre bundle, not only the base manifold and the typical fibre are affine spaces,

but also the functions φ are limited to affine maps. These are maps that preserve the affine properties

(for example, parallelism between two lines). In the case of Euclidean spaces, the maps may be assumed

to preserve the metric structure as well.

2.3.3 Observer transformations

Having identified an observer with a trivialization φ, we can consider the notion of observer transforma-

tion. Let φ1 : S → SA and φ2 : S → SA be two trivializations. Since each of these maps is, by definition,

invertible and fibre preserving, the composition:

φ1,2 = φ2 ◦ φ−11 : SA → SA, (3.9)

is a well-defined fibre-preserving map from SA onto itself. It represents the transformation from observer

number 1 to observer number 2. Because of fibre preservation, the map φ1,2 can be seen as a smooth

collection of time-dependent maps φ̃t1,2 of the typical fibre P onto itself, as shown schematically in Figure

2.3. In Galilean space-time proper, we limit these maps to affine maps that preserve the orientation and

the metric (Euclidean) structure of the typical fibre P (which can be seen as the usual 3-dimensional

Euclidean space).

Among all such maps φ̃t1,2 : P → P, it is possible to distinguish some that not only preserve the

Euclidean structure but also represent changes of observers that travel with respect to each other at a fixed

inclination (i.e., without angular velocity) and at a constant velocity of relative translation. Observers

related in this way are said to be inertially related. It is possible, accordingly, to divide the collection

of all observers into equivalence classes of inertially related observers. Of all these inertial classes, Isaac
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Figure 2.3: Observer transformation

Newton declared one to be privileged above all others2. This is the class of inertial observers, for which

the laws of Physics acquire a particularly simple form.

Notice that in the case of Galilean space-time, a crosee section represents a world line or, more classically,

a trajectory of a particle.

2.3.4 Relativistic space-time

The revolution brought about by the theory of Relativity (both in its special and general varieties) can

be said to have destroyed the bundle structure altogether. In doing so, it in fact simplified the geometry

of space-time, which becomes just a 4-dimensional manifold SR. On the other hand, instead of having

two separate metric structures, one for space and one for time, Relativity assumes the existence of a

space-time metric structure that involves both types of variables into a single construct. This type of

metric structure is what Riemann had already considered in his pioneering work on the subject, except

that Relativity (so as to be consistent with the Lorentz transformations) required a metric structure that

could lead both to positive and to negative squared distances between events, according to whether or

not they are reachable by a ray of light. In other words, the metric structure of Relativity is not positive

definite. By removing the bundle structure of space time, Relativity was able to formulate a geometrically

simpler picture of space time, although the notion of simplicity is in the eyes of the beholder.

To summarize, the theory of Relativity is simpler than its Classical counterpart from at least the following

point of view: the structure of relativistic space-time is less involved than that of Galilean space-time.

The extra structure in the latter is provided by the notion of absolute simultaneity. Starting from a

4-dimensional manifold of events, Classical Physics assumes that all observers agree on whether or not

two events happened simultaneously, regardless of their locations. As a consequence, a time-projection

operator arises naturally in this context. As a result, a Physics that abides by the principle of absolute

simultaneity must of necessity be formulated upon a space-time manifold that has the structure of a fibre

bundle, the base manifold being a 1-dimensional manifold. The typical fibre, representing space, is a

3-dimensional manifold. In the Galilean formulation, this typical fibre is the Euclidean space E3
. The

structure group is the group of Galilean transformations of E3
(those preserving Euclidean length). An

observer is a bundle trivialization. In contrast, in Relativity, space-time is just a 4-dimensional manifold

endowed with a special metric structure.

2This appears to be the meaning of Newton’s first law of motion.
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2.4 Microstructure

2.4.1 Shells

One of the many different ways to describe a shell in structural engineering is to regard it as the product

bundle of a two-dimensional manifold B times the open (or sometimes closed) segment F = (−1, 1) ∈ R.

The base manifold is known as the middle surface while the fibre conveys the idea of thickness, eventually

responsible for the bending stiffness of the shell. The fact that this is a product bundle means that one

can in a natural way identify corresponding locations throughout the thickness at different points of the

middle surface. Thus, two points of the shell standing on different points of the middle surface can be

said to correspond to each other if they have the same value of the second projection. This fact can be

interpreted as being on the same side of the middle surface and at the same fraction of the respective

thicknesses.

2.4.2 General microstructure

In a more general context, we can consider three-dimensional bodies for which the usual kinematic degrees

of freedom are supplemented with extra (internal) degrees of freedom intended to describe a physically

meaningful counterpart. This idea, going at least as far back as the pioneering work of the Cosserat

brothers3, applies to diverse materials, such as liquid crystals and granular media. The base mani-

fold represents the matrix, or macromedium, while the fibres represent the micromedium (the elongated

molecules or the grains, as the case may be). An example of this situation is provided by an everyday

material such as concrete, which is formed by embedding in a cement matrix an aggregate consisting

of stones whose size is relatively large when compared with the grains of cement. Each of these stones

can then be considered as a micromedium. In a continuum model we expect to have these micromedia

continuously assigned to each point of the matrix, thus generating a fibre bundle, whose typical fibre is

the micromedium4. In contradistinction with the case of the shell, there is no canonical correspondence

between points belonging to micromedia attached at different points of the macromedium.

2.5 Material uniformity

2.5.1 An imprecisely defined material body

In Section 2.2 we introduced the intuitive idea of a material point as a small die of material that can be

subjected to linear deformations and whose constitutive response is governed by one or more constitutive

equations. Following this imprecise intuitive line of thought, we can consider a sort of “continuous

collection” of such material points5 and regard the resulting entity as a material body. Each of the

constituent material points is endowed with its own constitutive law and, if we cavalierly denote by X a

running three-dimensional variable indicating the location of the body B, we obtain the constitutive law

3Cosserat E, Cosserat F (1909), Théorie des corps déformables, Hermann et Fils, Paris.
4This example has been chosen for its graphical clarity. In the actual practice of Civil Engineering it is rare to find that

concrete is treated in such a degree of detail. Instead, the contribution of the micromedium is averaged or homogenized into

a supposedly equivalent ordinary macromedium
5This notion will be made more precise when we define a differentiable manifold and its tangent bundle.



30 CHAPTER 2. PHYSICAL ILLUSTRATIONS

of the body as some function

ψ = ψ(F,X). (5.1)

2.5.2 Distant versus local symmetry

An illuminating example of distant, as opposed to local, symmetries is suggested by the tiling of a

bathroom floor.6 Each square tile has a symmetry group consisting of certain rotations and reflections.

But it is also intuitively recognized that the floor as a whole has a repetitive pattern and, therefore,

some extra symmetry. Because the floor is not infinite, however, we cannot describe all of these extra

symmetries by means of a group of global transformations of the plane, such as translations. The notion

of groupoid circumvents this problem. In the case of a material body, the fact that two distant points

are made of the same material should be understood as an extra degree of symmetry that the body

possesses, just as in the case of the bathroom floor, where distant tiles happen to have the same shape.

This analogy should not be pushed too far, but it serves to trigger a useful picture and to understand

the unifying role that the concept of groupoid plays in terms of encompassing all types of symmetries.

2.5.3 Material isomorphisms

We want to formalize the answer to the question: Are two material points X1 and X2 made of the same

material? We reason that for this to be so, the only possible difference between the local constitutive

equations ψ(F,X1) and ψ(F,X2) must be a fixed transplant represented by some matrix P12 such that

ψ(F,X2) = ψ(FP12,X1), (5.2)

identically for all deformations F. Indeed, in this case we would agree that the responses of the two points

are exactly the same except for the fact that the die at point X2 is a rotated or otherwise distorted version

of the die at point X1. In the standard Continuum Mechanics terminology, such a material transplant is

known as a material isomorphism. It is not difficult to verify that material isomorphism is an equivalence

relation. A body is said to be materially uniform if all its points are mutually materially isomorphic.

Notice that a material point is trivially isomorphic to itself (via the identity map), but it may also be

non-trivially so (via a non-trivial material symmetry). We thus see that a material isomorphism is a

generalization of the notion of local material symmetry to encompass what we may call distant material

symmetries of a material body.

2.5.4 The material groupoid

Given a material body, whether uniform or not, we can imagine an arrow drawn for every material

isomorphism between two points, including the material symmetries, namely, the cases whereby the source

and target points coincide. In this way, without much further ado, we conclude that every material body

with a specified constitutive law gives rise to a groupoid, which we shall call the material groupoid of

the body. In case the body is materially uniform, we obtain a transitive groupoid. If, in addition, the

constitutive equation is continuous in X, we obtain a transitive topological groupoid.7

6See Weinstein A (2000), Groupoids: Unifying Internal and External Symmetry. A tour through Examples, Notices of

the American Mathematical Society 43, 744-752.
7For the use of groupoids in the theory of material uniformity see: Epstein M and de León M(1998), Geometrical theory

of uniform Cosserat media, Journal of Geometry and Physics 26, 127-170.
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Consider now a non-uniform body. The material groupoid is still properly definable, except that it loses

its transitivity. It may still preserve its continuity (namely, it may still be a topological groupoid). A

good example of this last situation is provided by the so-called functionally-graded materials, which have

continuously varying material properties tailored to specific applications. Under certain circumstances,

however, the transitivity of the material groupoid of functionally graded materials can be restored by

modifying the definition of material isomorphism8.

2.5.5 Material principal bundles

A material principal bundle of a materially uniform body B as any one of the equivalent principal bundles

that can be obtained from the material groupoid. Physically speaking, a material principal bundle is

obtained by arbitrarily singling out a material point X0, called the material archetype and replacing the

material transplants between arbitrary pairs of points by material implants P(X) from the archetype

to each and every point X, as shown in Figure 2.4. The constitutive equation of a uniform body thus

conceived is given by:

ψ(F,X) = ψ̄(FP(X)), (5.3)

where we have indicate by ψ̄ the constitutive law of the archetype.

We observe, however, that whereas the material groupoid always exists (whether or not the body is

uniform), the material principal bundles can only be defined when the body is smoothly uniform. Then,

and only then, we have a transitive topological groupoid to work with. In conclusion, although both

geometrical objects are suitable for the description of the material structure of a body, the groupoid

representation is the more faithful one, since it is unique and universal.

The structure group of a material principal bundle is, according to the previous construction, nothing but

the material symmetry group of the archetype. As expected, it controls the degree of freedom available

in terms of implanting this archetype at the points of the body.

A material principal bundle may, or may not, admit (global) cross sections. If it does, the body is said

to be globally uniform. This term is slightly misleading, since uniformity already implies that all the

points of the body are materially isomorphic. Nevertheless the term conveys the sense that the material

isomorphisms can be prescribed smoothly in a single global chart of the body (which, by definition,

always exists). Put in other terms, the existence of a global section implies (in a principal bundle, as we

know) that the principal bundle is trivializable. A cross section of a principal bundle establishes, through

the right action of the structure group, a global isomorphism between the fibres, also called a distant

parallelism. In our context, this property will be called a material parallelism. If the structure group is

discrete, the material parallelism is unique. Moreover, if the material symmetry group consists of just

the identity, a uniform body must be globally uniform.

8See: Epstein M, de León M (2000), Homogeneity Without Uniformity: Toward a Mathematical Theory of Functionally

Graded Materials, International Journal of Solids and Structures 37, 7577-7591. Also: Epstein M, Elżanowski M (2007)

Material inhomogeneities and their evolution, Springer.
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Chapter 3

Differential constructs

3.1 Differentiable manifolds

Topological manifolds provide the most general arena for the definition of continuous functions. Continu-

ity alone, however, may not be enough to formulate physical problems in a quantitative manner. Indeed,

experience with actual dynamical and field theories of Mechanics and Electromagnetism, to name only

the classical theories, has taught us to expect that the various phenomena are governed by ordinary or

partial differential equations. These theories, therefore, must be formulated on a substratum that has

more structure than a topological manifold, namely, an entity that allows for the definition of differen-

tiable functions. Differentiable manifolds are the natural generalization of topological manifolds to handle

differentiability.

Since a topological space does not possess in itself enough structure to sustain the notion of differentiabil-

ity, the key to the generalization of a topological manifold is to be found in restrictions imposed upon the

transition functions, which are clearly defined in Rn
. Two charts, (Uα, φα) and (Uβ , φβ), of a topological

manifoldM are said to be Ck-compatible, if the transition functions φαβ and φβα, as defined in Equation

(2.1), are of class Ck. In terms of the representation (2.2), this means that all the partial derivatives up

to and including the order k exist and are continuous. By convention, a continuous function is said to be

of class C0 and a smooth function is of class C∞.

In a topological manifold, all charts of all possible atlases are automatically C0-compatible. An atlas of

class Ck of a topological manifoldM is an atlas whose charts are Ck-compatible. Two atlases of class Ck

are compatible if each chart of one is compatible with each chart of the other. The union of compatible

Ck-atlases is a Ck atlas. Given a Ck atlas, one can define the corresponding maximal compatible atlas of

class Ck as the union of all atlases that are Ck-compatible with the given one. A maximal atlas, thus,

contains all its compatible atlases.

Definition 3.1.1 An n-dimensional differentiable manifold of class Ck is an n-dimensional topological

manifold M together with a maximal atlas of class Ck. For k = 0 one recovers the topological manifold.

The C∞ case delivers a smooth manifold, or simply a manifold.

A maximal Ck-atlas is also called a Ck-differentiable structure. Thus, a Ck-manifold is a topological

manifold with a Ck-differentiable structure. For the particular case of Rn
, we can choose the canonical

33
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atlas consisting of a single chart (the space itself) and the identity map. The induced C∞-differentiable

structure is the standard differentiable structure of Rn
.

A differentiable manifold is oriented if it admits an atlas, called an oriented atlas, such that all the

transition functions have a positive Jacobian determinant. Two oriented atlases are either compatible

or every transition function between charts of the two atlases has a negative determinant. An oriented

manifold is an orientable manifold with and oriented maximal atlas. In other words, only those coordinate

transformations that preserve the orientation are permitted.

Given two differentiable manifoldsM and N of dimensions m and n, respectively, we define the (m+n)-

dimensional product manifold by endowing the Cartesian product M×N with the atlas made of all the

Cartesian products of charts of an atlas of M and an atlas of N .

3.1.1 Differentiable maps

LetM and N be (smooth) manifolds of dimensions m and n, respectively. A continuous map f :M→N
is differentiable of class Ck at a point p ∈M if, using charts (U , φ) and (V, ψ) belonging to the respective

maximal atlases ofM and N , the local coordinate representation f̂ of f , as defined in Equation (2.3), is

of class Ck at φ(p) ∈ Rm
. This definition is independent of chart, since the composition of differentiable

maps in Rm
is differentiable. Notice how the notion of differentiability within the manifolds has been

cleverly deflected to the charts.

Maps of class C∞ are said to be smooth maps, to which we will confine our analysis from now on. In the

special case N = R, the map f :M→ R is called a (real) function. When, on the other hand, M is an

open interval H = (a, b) of the real line, the map γ : H → N is called a (parametrized) curve in N . The

name diffeomorphism is reserved for the case in which M and N are of the same dimension and both f

and its (assumed to exist) inverse f−1 are smooth. Two manifolds of the same dimension are said to be

diffeomorphic if there exists a diffeomorphism between them.

3.1.2 Smooth structures

Having introduced the concept of differentiable manifold, we are in a position to elevate all the topological

constructs introduced so far from the status of continuity to a status of smoothness. Thus, a topological

group whose underlying set is a differentiable (smooth) manifold will be called a Lie group if the operations

of multiplication and inversion are smooth. A smooth fibre bundle is a topological fibre bundle in which

the base manifold and the typical fibre are smooth manifolds and the structure group is a Lie group.

The projection map is smooth (technically, a surjective submersion). An important smooth fibre bundle,

canonically defined for any given smooth manifold, is the principal bundle of linear frames, which we will

study later in some detail. Finally, a topological groupoid in which the total space and the base space are

smooth manifolds, both projections are surjective submersions and all operations are smooth is called a

Lie groupoid.

3.1.3 Tangent vectors

Let H be an open interval of the real line and, without loss of generality, assume that 0 ∈ H. Consider

the collection of all (smooth) curves γ : H →M such that γ(0) = p. Our aim is to define the notion of
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tangency of two such curves at p, an aim that we achieve by using the technique of deflecting to charts.

Indeed, if (U , φ) is a chart containing p, the composition γ̂ = φ ◦ γ : H → Rm
is a curve in Rm

, where m

is the dimension of M. The coordinate expression of γ̂ is given by m smooth real functions xi = γi(t),

where t is the natural coordinate of R and i = 1, ...,m. We say that two curves, γ1 and γ2, in our

collection are tangent at p if:
dγi1
dt

∣∣∣∣
t=0

=
dγi2
dt

∣∣∣∣
t=0

, i = 1, ...,m. (1.1)

It is a simple matter to verify that this definition is independent of chart.

Noting that tangency at p is an equivalence relation, we define a tangent vector at p as an equivalence

class of (smooth, parametrized) curves tangent at p. A tangent vector is thus visualized as what the

members of a collection of tangent (parametrized) curves have in common. More intuitively, one may say

that what these curves have in common is a small piece of a curve.

Let f : M → R be a (differentiable) function and let v be a tangent vector at p ∈ M. Choosing any

representative γ in the equivalence class v, the composition f ◦ γ is a real-valued function defined on H.

The derivative of f at p along v is defined as:

v(f) =
d(f ◦ γ)

dt

∣∣∣∣
t=0

. (1.2)

This notation suggests that a vector can be regarded as a linear operator on the collection of differentiable

functions defined on a neighbourhood of a point. The linearity is a direct consequence of the linearity

of the derivative. Not every linear operator, however, is a tangent vector because, by virtue of Equation

(1.2), tangent vectors must also satisfy the Leibniz rule, namely, for any two functions f and g:

v(fg) = fv(g) + v(f)g, (1.3)

where, on the right-hand side, f and g are evaluated at p.

3.1.4 Tangent and cotangent spaces

The collection TpM of all the tangent vectors at p ∈M is called the tangent space to the manifold at p.

It is not difficult to show that tangent vectors at a point p satisfy all the conditions of a vector space if

we define their addition and multiplication by a scalar in the obvious way (for example, by using chart

components). In other words, TpM is a vector space. To find its dimension, we choose a local chart

(U , φ) with coordinates x1, ..., xm, such that the point p is mapped to the origin of Rm
. The inverse map

φ−1, when restricted to the natural coordinate lines of Rm
, delivers m curves at p. Each of these curves,

called a coordinate line in U , defines a tangent vector, which we suggestively denote by (∂/∂xi)p. It can

be shown that these vectors constitute a basis of TpM, called the natural basis associated with the given

coordinate system. The dimension of the tangent space at each point of a manifold is, therefore, equal to

the dimension of the manifold itself. The cotangent space at p, denoted by T ∗pM, is defined as the dual

space of TpM.

3.1.5 The tangent and cotangent bundles

If we attach to each point p of an m-dimensional manifoldM its tangent space TpM, we obtain, intuitively

speaking, a 2m-dimensional entity, which we denote by TM called the tangent bundle of M. A crude
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visualization of this entity can be gathered whenM is a 2-sphere, such as a globe, at each point of which

we have stuck a postal stamp or a paper sticker. The tangent bundle is not the globe itself but rather

the collection of the stickers. This collection of tangent spaces, however, has the property that it projects

on the original manifold. In our example, each sticker indicates the point at which it has been attached.

In other words, the set TM is endowed, by construction, with a projection map τ on the base manifold

M. More explicitly, a typical point of TM consists of a pair (p,vp), where p ∈ M and vp ∈ TpM. The

projection map:

τ : TM→M (1.4)

is given by the assignation:

τ(p,vp) = p. (1.5)

To see that the set TM can be regarded as a manifold, we construct explicitly an atlas out of any

given atlas of the base manifold. Let (U , φ) be a chart in M with coordinates xi, ..., xm. Adopting, as

we may, the natural basis (∂/∂xi)p of TpM at each point p ∈ U , we can identify each vector vp with

its components vip. Put differently, we assign to each point (p,vp) ∈ τ−1(U) ⊂ TM the 2m numbers

(x1, ..., xm, v1, ..., vm), namely, a point in R2m
. We have thus obtained a coordinate chart on τ−1(U). It is

now a formality to extend this construction to a whole atlas of TM and to show that TM is a differentiable

manifold of dimension 2m. In the terminology of general fibre bundles, the set TpM = τ−1(p) is called

the fibre at p ∈ M. Since each fibre is an m-dimensional vector space, we say that the typical fibre of

TM is Rm
.

Upon a coordinate transformation represented by Equation (2.2), the components v̂i of a vector v at p in

the new natural basis (∂/∂yi)p are related to the old components vi in the basis (∂/∂xi)p by the formula:

v̂i =

(
∂yi

∂xj

)
p

vj , (1.6)

while the base vectors themselves are related by the formula:

(∂/∂yi)p =

(
∂xj

∂yi

)
p

(∂/∂xj)p. (1.7)

Comparing these two formulas, we conclude that the components of vectors behave contravariantly. In

traditional treatments, it was customary to define tangent vectors as indexed quantities that transform

contravariantly under coordinate changes.

A similar construction can be carried out by attaching to each point of a manifoldM its cotangent space

T ∗pM to obtain the set T ∗M, called the cotangent bundle ofM. A typical point of T ∗M is a pair (p, ωp),

where p ∈M and ωp ∈ T ∗pM. The projection map π : T ∗M→M is given by:

π(p, ωp) = p. (1.8)

Given a chart, the local dual basis to the natural basis (∂/∂xi)p is denoted by (dxi)p, with i = 1, ...,m. The

covector ωp ∈ T ∗pM can be uniquely expressed as ωp = ωidx
i, where the subscript p has been eliminated

for clarity. Given a point (p, ωp) ∈ π−1(U) ⊂ T ∗M we assign to it the 2m numbers (x1, ..., xm, ω1, ..., ωm).

In this way, it can be rigorously shown that T ∗M is a manifold of dimension 2m.

Upon a coordinate transformation, the components ω̂i of a covector ω at p transform according to:

ω̂i =

(
∂xj

∂yi

)
p

ωj , (1.9)
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while the dual base vectors themselves are related by the formula:

dyi =

(
∂yi

∂xj

)
p

dxj . (1.10)

The components of covectors behave covariantly.

3.1.6 The differential of a map

Given a differentiable map:

g :M→N (1.11)

between two manifolds,M and N , of dimensions m and n, respectively, we focus attention on a particular

point p ∈ M and its image q = g(p) ∈ N . Let vp ∈ TpM be a tangent vector at p and let γ : H →M
be one of its representative curves. The composite map:

g ◦ γ : H −→ N (1.12)

is then a smooth curve in N passing through q. This curve (the image of γ by g) is, therefore, the

representative of a tangent vector at q which we will denote (g∗)p(vp). The vector (g∗)p(vp) is independent

of the representative curve γ chosen for vp. Moreover, (g∗)p is a linear map on vectors at p.

The map (g∗)p just defined is called the differential of g at p. It is a linear map between the tangent

spaces TpM and Tg(p)N . Since this construction can be carried out at each and every point of M, we

obtain a map g∗ between the tangent bundles, namely:

g∗ : TM→ TN , (1.13)

called the differential of g. Alternative notations for this map are: Dg and Tg, and it is also known as

the tangent map. One should note that the map g∗ includes the map g between the base manifolds, since

it maps vectors at a point p linearly into vectors at the image point q = g(p), and not just to any vector

in TN . It is, therefore, a fibre-preserving map. This fact is best illustrated in the following commutative

diagram:

TM -g∗
TN

?

τN

N
?

τM

M -
g

(1.14)

where τM and τN are the projection maps of TM and TN , respectively. The differential is said to push

forward tangent vectors at p to tangent vectors at the image point g(p).

In the particular case of a function f :M→ R, the differential f∗ can be interpreted somewhat differently.

Indeed, the tangent space TrR can be trivially identified with R itself, so that f∗ can be seen as a real-

valued function on TM. This function is denoted by df : TM → R. The differential of a function

satisfies the identity:

df(v) = v(f). (1.15)
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In local systems of coordinates xi (i = 1, ...,m) and yα (α = 1, ..., n) around p and g(p), respectively, the

differential of g at p maps the vector with components vi into the vector with components:

[(g∗)p(vp)]
α =

(
∂gα

∂xi

)
p

vi, (1.16)

where gα = gα(x1, ..., xn) is the coordinate representation of g in the given charts. The (m × n)-matrix

with entries {
(
∂gα

∂xi

)
p
} is the Jacobian matrix at p of the map g in the chosen coordinate systems. The

rank of the Jacobian matrix is independent of the coordinates used. It is called the rank of g at p.

Let f : N → R be a differentiable function and let g :M→N be a differentiable map between manifolds.

Then:

((g∗)pvp)(f) = vp(f ◦ g), p ∈M. (1.17)

The differential of a composition of maps is equal to the composition of the differentials. More precisely,

if g :M→N and h : N → P are differentiable maps, then:

((h ◦ g)∗)p(vp) = (h∗)g(p)((g∗)p(vp)). (1.18)

In coordinates, this formula amounts to the multiplication of the Jacobian matrices.

3.1.7 The linear frame bundle

The bundle of linear frames, FB, of a base n-dimensional manifold B can be defined constructively in

the following way. At each point b ∈ B we form the set FbB of all ordered n-tuples {e}b = (e1, ..., en) of

linearly independent vectors ei in TbB, namely, the set of all bases of TbB. Our total space will consist of

all ordered pairs of the form (b, {e}b) with the obvious projection onto B. The pair (b, {e}b) is called a

linear frame at b. Following a procedure identical to the one used for the tangent bundle, we obtain that

each basis {e}b is expressible uniquely as:

ej = pij
∂

∂xi
(1.19)

in a coordinate system xi, where {pij} is a non-singular matrix. We conclude that the typical fibre in

this case is GL(n;R). But so is the structure group. Indeed, in another coordinate system, yi, we have:

ej = qij
∂

∂yi
, (1.20)

where

qij =
∂yi

∂xm
pmj = aim pmj . (1.21)

This is an instance of a principal fibre bundle, namely, a fibre bundle whose typical fibre and structure

group coincide. The action of the group on the typical fibre is the natural left action of the group on

itself. One of the interesting features of a principal bundle is that the structure group has also a natural

right action on the bundle itself, and this property has been used in Section 1.4.1 to provide an alternative

definition of principal bundles. In the case of FB, for example, the right action is defined, in a given

coordinate system xi, by

Ra{e} = pkia
i
j

∂

∂xk
, j = 1, ..., n, (1.22)
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which sends the basis (1.19) at b to another basis at b, i.e., the action is fibre-preserving. One can verify

that this definition of the action is independent of the system of coordinates adopted. The principal

bundle of linear frames of a manifold is associated to all the tensor bundles (see Section 3.3.3), including

the tangent and the cotangent bundles, of the same manifold. By a direct application of the fundamental

existence theorem, we know that the associated principal bundle is defined uniquely up to an equivalence.

Many properties of bundles can be better understood by working first on the associated principal bundle.

3.1.8 Associated bundles

The concept of associated bundle has already been defined and used to introduce the notion of the

principal bundle associated with any given fibre bundle. On the other hand, we have introduced an

independent definition of principal bundles by means of the idea of a right action of a group on a given

total manifold. We want now to show that this line of thought can be pursued to obtain another view of

the collection of all (non-principal) fibre bundles associated with a given principal bundle.

As a more or less intuitive motivation for this procedure, it is convenient to think of the example of the

principal bundle of linear frames FB of a manifold B. We already know that this bundle is associated to the

tangent bundle TB. Consider now a pair (f, v), where f ∈ FB and v ∈ TB, such that πP (f) = π(v) = b.

In other words, f and v represent, respectively, a basis and a vector of the tangent space at some point

b ∈ B. We can, therefore, identify v with its components on the linear frame f , namely, with an element

of the typical fibre (Rn
) of TB. If we consider now a pair (f̂ , v), where v is the same as before but f̂

is a new linear frame at b, the corresponding element of the typical fibre representing the same vector

v changes. More explicitly, with an obvious notation, if f̂j = aijfi, then vi = aij v̂
j or: v̂i = (a−1)ijv

j .

We conclude that to represent the same object under a change of frame, there needs to be some kind of

compensatory action in the change of the components. The object itself (in this case, the tangent vector)

can be identified with the collection (or equivalence class) of all pairs made up of a frame and a matrix

related in this compensatory way. In terms of the group actions on the typical fibres, if f̂ = Raf , then

the representative r of the vector v in Rn
changes according to r̂ = La−1r. We may, therefore, think

of a vector as an equivalence class of elements of the Cartesian product G × Rn
, corresponding to the

following equivalence relation: (g, r) ∼ (ĝ, r̂) if, and only if, there exists a ∈ G such that ĝ = ga and

r̂ = La−1r.

With the above motivation in mind, the following construction of a fibre bundle associated to a given

principal bundle will seem less artificial than it otherwise would. We start from the principal bundle

(P, πP ,B,G,G) and a manifold F , which we want to construe as the typical fibre of a new fibre bundle

(C, π,B,F ,G) associated with P. For this to be possible, we need to have an effective left action of G on

F , which we assume to have been given. To start off, we form the Cartesian product P × F and notice

that the structure group G acts on it with a right action induced by its right action on P and its left

action on F . To describe this new right action, we will keep abusing the notation in the sense that we

will use the same symbols for all the actions in sight, since the context should make clear which action is

being used in each particular expression. Let (p, f) be an element of the product P × F , and let a ∈ G.

We define the effective right action:

Ra(p, f) = (Rap, La−1f). (1.23)

The next step towards the construction of the associated bundle with typical fibre F consists of taking

the quotient space C generated by this action. In other words, we want to deal with a set whose elements
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are equivalence classes in C × F by the equivalence relation: “(p1, f1) ∼ (p2, f2) if, and only if, there

exists a ∈ G such that (p2, f2) = Ra(p1, f1)”. The motivation for this line of attack should be clear from

the introductory remarks to this section. Recalling that the right action of G on P is fibre preserving,

it becomes obvious that all the pairs (p, f) in a given equivalence class have first components p with

the same projection πP (p) on B. This means that we have a perfectly well-defined projection π in the

quotient space C, namely: π : C → B is a map that assigns to each equivalence class the common value

of the projection of the first component of all its constituent pairs.

Having a projection, we can now define the fibre of C over b ∈ B naturally as π−1(b). We need to show

now that each such fibre is diffeomorphic to the putative typical fibre F . More precisely, we want to show

that for each local trivialization (U , ψ) of the original principal bundle P, we can also construct a local

trivialization of π−1(U), namely, a diffeomorphism ρ : π−1(U)→ U ×F . To understand how this works,

let us fix a point b ∈ U and recall that, given the local trivialization (U , ψ), the map ψ̃b provides us with

a diffeomorphism of the fibre π−1P (b) with G. We now form the product map of ψ̃b with the identity map

of F , namely: (ψ̃b, idF ) : π−1P (b) × F → G × F . Each equivalence class by the right action (1.23) is

mapped by the product map (ψ̃b, idF ) into an orbit, as shown in Figure 3.1.

G

F

Figure 3.1: Images of equivalence classes

These orbits do not intersect with each other. Moreover, they can be seen as graphs of single-valued

F-valued functions of G. Therefore, choosing any particular value g ∈ G, we see that these orbits can be

parametrized by F . This provides the desired one-to-one and onto relation between the fibre π−1(b) and

the manifold F , which can now legitimately be called the typical fibre of C. To complete the construction

of the desired fibre bundle, we need to guarantee that the fibre-wise isomorphism that we have just

constructed depends differentiably on b, a requirement that we assume fulfilled.

3.2 Vector fields and the Lie bracket

3.2.1 Vector fields

A vector field V on a manifoldM is an assignment to each point p ∈M of a tangent vector Vp = V(p) ∈
TpM. We restrict our attention to smooth vector fields, whose components are smooth functions in any

given chart. A vector field is, therefore, a smooth map:

V :M→ TM, (2.1)
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satisfying the condition:

τ ◦V = idM, (2.2)

where idM is the identity map of M. The meaning of this last condition is that the vector assigned to

the point p is a tangent vector at p, rather than at any other point.

A geometrically convenient way to look at a vector field is to regard it as a cross section of the tangent

bundle. This terminology arises from the pictorial representation depicted in Figure 3.2, where the base

manifold is represented by a shallow arc and the fibres (namely, the tangent spaces) by straight lines

hovering above it Then, a cross section looks like a curve cutting through the fibres.
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Figure 3.2: A vector field as a cross section of the tangent bundle

3.2.2 The Lie bracket

If V is a (smooth) vector field on a manifold M and f :M→ R is a smooth function, then the map:

Vf :M→ R, (2.3)

defined as:

p 7→ Vp(f) (2.4)

is again a smooth map. It assigns to each point p ∈M the directional derivative of the function f in the

direction of the vector field at p. In other words, a vector field assigns to each smooth function another

smooth function. Given, then, two vector fields V and W over M, the iterated evaluation:

h = W(Vf) :M→ R, (2.5)

gives rise to a legitimate smooth function h on M.

On the basis of the above considerations, one may be tempted to define a composition of vector fields by

declaring that the composition W ◦U is the vector field which assigns to each function f the function h

defined by Equation (2.5). This wishful thinking, however, does not work. To see why, it is convenient

to work in components in some chart with coordinates xi. Let:

V = V i
∂

∂xi
W = W i ∂

∂xi
, (2.6)

where the components V i and W i (i = 1, ...,m) are smooth real-valued functions defined over the m-

dimensional domain of the chart. Given a smooth function f :M→ R, the function g = Vf is evaluated

at a point p ∈M with coordinates xi (i = 1, ...,m) as:

g(p) = V i
∂f

∂xi
. (2.7)
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Notice the slight abuse of notation we incur into by identifying the function f with its representation in

the coordinate system.

We now apply the same prescription to calculate the function h = Wg and obtain:

h(p) = W i ∂g

∂xi
= W i

∂
(
V j ∂f

∂xj

)
∂xi

=

(
W i ∂V

j

∂xi

)
∂f

∂xj
+W iV j

∂2f

∂xi∂xj
. (2.8)

The last term of this expression, by involving second derivatives, will certainly not transform as the

components of a vector should under a change of coordinates. Neither will the first. This negative result,

on the other hand, suggests that the offending terms could perhaps be eliminated by subtracting from

the composition WV the opposite composition VW, namely:

(WV −VW) (f) =

(
W i ∂V

j

∂xi
− V i ∂W

j

∂xi

)
∂f

∂xj
. (2.9)

The vector field thus obtained, is called the Lie bracket of W and V (in that order) and is denoted by

[W,V]. More explicitly, its components in the coordinate system xi are given by:

[W,V]j = W i ∂V
j

∂xi
− V i ∂W

j

∂xi
. (2.10)

Upon a coordinate transformation, these components transform according to the rules of transformation

of a vector.

The following properties of the Lie bracket are worthy of notice:

(1) Skew symmetry:

[W,V] = −[V,W] (2.11)

(2) Jacobi identity:

[[W,V],U] + [[V,U],W] + [[U,W],V] = 0 (2.12)

The collection of all vector fields over a manifold has the natural structure of an infinite dimensional

vector space, where addition and multiplication by a scalar are defined in the obvious way. In this vector

space, the Lie bracket operation is bilinear. A vector space endowed with a bilinear operation satisfying

conditions (1) and (2) is called a Lie algebra.

Vector fields can be multiplied by functions to produce new vector fields. Indeed, for a given function f

and a given vector field V, we can define the vector field fV by:

(fV)p = f(p)Vp. (2.13)

It can be shown that:

[gW, fV] = gf [W,V] + g (Wf) V − f (Vg) W, (2.14)

where g, f are smooth functions and W,V are vector fields over a manifold M.
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3.2.3 Push-forwards

We have seen that the differential of a map between manifolds carries tangent vectors to tangent vectors.

This operation is sometimes called a push-forward. Does a map also push forward vector fields to vector

fields? Let V : M → TM be a vector field on M and let g : M → N be a smooth map. Since the

differential of g is a map of the form g∗ : TM→ TN , the composition g∗ ◦V makes perfect sense, but

it delivers a (well-defined) map g∗V from M (and not from N ) into TN . This is not a vector field, nor

can it in general be turned into one. If the dimension of M is larger than that of N , points in N will

end up being assigned more than one vector. If the dimension of the source manifold is less than that of

the target, on the other hand, even if the function is one-to-one, there will necessarily exist points in N
to which no vector is assigned. The only case in which the push-forward of a vector field can be regarded

as a vector field on the target manifold is the case in which both manifolds are of the same dimension

and the map is a diffeomorphism.

Notwithstanding the above remark, let g : M → N be a smooth map. We say that the vector fields

V :M→ TM and W : N → TN are g-related if:

g∗V(p) = W(g(p)) ∀p ∈M. (2.15)

According to this definition, if g happens to be a diffeomorphism, then V and g∗V are automatically

g-related. The pushed-forward vector field is then given by g∗ ◦V ◦ g−1.

Theorem 3.2.1 Let V1 be g-related to W1 and let V2 be g-related to W2. Then the Lie bracket [V1,V2]

is g-related to the Lie bracket [W1,W2], that is:

[g∗V1, g∗V2] = g∗[V1,V2]. (2.16)

3.2.4 The algebra of tensors on a vector space

Although a more general situation may be envisioned, we now consider the collection of all possible tensor

products involving any finite number of factors, each factor being equal to a given vector space V or its

dual V ∗. The order of the factors, of course, matters, but it is customary to say that a tensor product

is of type (r,s) if it is obtained by multiplying r copies of V and s copies of V ∗, regardless of the order

in which these copies appear in the product. An element of such tensor product is also called a tensor

of type (r, s). Another common terminology is to refer to r and s, respectively, as the contravariant and

covariant degrees of the tensor. Thus, a vector is a tensor of type (1, 0), while a covector is of type (0, 1).

By convention, a tensor of type (0, 0) is identified with a scalar. Since the field of scalars R has the

natural structure of a vector space (whose elements are tensors of type (0, 0)), it makes sense to take its

tensor product with a vector space. Note that R⊗ V = V .

The tensor product of a tensor of type (r1, s1) with a tensor of type (r2, s2) is a tensor of type (r1+r2, s1+

s2). A map from a Cartesian product of vector spaces into a vector space is said to be multilinear if it is

linear in each of the arguments. A tensor T of type (r, s) can be considered as a multilinear map such

that T (ω1, ..., ωr,v1, ...,vs) ∈ R, where vi and ωj belong, respectively, to V and V ∗, for each i = 1, ..., r

and each j = 1, ..., s.

The collection of all tensors of all orders defined on a vector space V can be given the formal structure

of an algebra (with the operations of direct sum and tensor product) known as the algebra of tensors
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on V . Considering only tensors of covariant degree zero, namely, tensors of type (r, 0), we obtain the

contravariant tensor algebra of V . When written in components, all indices of tensors in this algebra are

superscripts.

In a similar way, one can define the covariant tensor algebra by considering tensors of type (0, s). On

the other hand, considering V ∗ as a vector space in its own right, we could form its contravariant tensor

algebra, and these two objects turn out to be the same. The contravariant and covariant algebras can

be considered dual to each other in the sense that there exists a canonical way to evaluate an element of

one over an element of the other to produce a real number linearly. Considering a tensor T of type (k, 0)

and a tensor S of type (0, k) and using a basis in V , this evaluation reads:

〈S, T 〉 = Si1...ik T
i1...ik . (2.17)

If the tensors are of different orders (that is, a tensor of type (r, 0) and a tensor of type (0, s) with s 6= r),

we define the evaluation as zero.

A tensor T of type (r, 0) can be seen as a multilinear map:

T : V ∗, ..., V ∗ −→ R
(ω1, ..., ωr) 7→ T (ω1, ..., ωr), ω1, ..., ωr ∈ V ∗. (2.18)

For tensors in the contravariant or covariant algebras it makes sense to speak about symmetry and skew

symmetry.

A tensor of type (r, 0) is said to be (completely) symmetric if the result of the operation (2.18) is indepen-

dent of the order of the arguments. Put in other words, exchanging any two arguments with each other

produces no effect in the result of the multilinear operator T . A similar criterion applies for completely

symmetric tensors of order (0, s), except that the arguments are vectors rather than covectors. Choosing

a basis in V , symmetry boils down to indifference to index swapping.

Analogously, a tensor of type (r, 0) is (completely) skew-symmetric if every mutual exchange of two

arguments alters the sign of the result, leaving the absolute value unchanged. By convention, all tensors

of type (0, 0) (scalars), (1, 0) (vectors) and (0, 1) (covectors) are considered to be both symmetric and

skew-symmetric. Notice that a completely skew-symmetric tensor of type (r, 0) with r larger than the

dimension of the vector space of departure must necessarily vanish.

The collections of all symmetric or skew symmetric tensors (whether contravariant or covariant) do not

constitute a subalgebra of the tensor algebra, for the simple reason that the tensor multiplication of two

symmetric (or skew-symmetric) tensors is not symmetric (skew-symmetric) in general. Nevertheless, it is

possible, and convenient, to define algebras of symmetric and skew-symmetric tensors by modifying the

multiplicative operation so that the results stay within the algebra. The case of skew-symmetric tensors

is the most fruitful. It gives rise to the so-called exterior algebra of a vector space, which we will now

explore. It will permit us to answer many intriguing questions such as: is there anything analogous to

the cross-product of vectors in dimensions other than 3? What is an area and what is the meaning of

flux?

3.2.5 Exterior algebra

The space of skew-symmetric contravariant tensors of type (r, 0) will be denoted by Λr(V ). The elements

of Λr(V ) will be also called r-vectors and, more generally, multivectors. The number r is the order of the
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multivector. As before, the space Λ0(V ) coincides with the scalar field R, while Λ1(V ) coincides with

the vector space V .

Consider the ordered r-tuple of covectors (ω1, ω2, ..., ωr) and let π denote a permutation of this set. Such

a permutation is even (odd) if it is obtained by an even (odd) number of exchanges between pairs of

elements in the original set. An even (odd) permutation π has a signature, denoted by sign(π), equal to

1 (−1).

Given an arbitrary tensor T of type (r, 0), we define its skew-symmetric part Ar(T ) as the multilinear

map defined by the formula:

Ar(T )(ω1, ω2, ..., ωr) =
1

r!

∑
π

sign(π) T (π). (2.19)

As an example, for the case of a contravariant tensor of degree 3, namely, T = T ijkei ⊗ ej ⊗ ek, where

eh (h = 1, ..., n ≥ r) is a basis of V , the skew symmetric part is obtained as:

A3(T ) =
1

6

(
T ijk + T jki + T kij − T ikj − T jik − T kji

)
ei ⊗ ej ⊗ ek. (2.20)

Given two multivectors a and b, of orders r and s, respectively, we define their exterior product or wedge

product as the multivector a ∧ b of order (r + s) obtained as:

a ∧ b = Ar+s(a⊗ b). (2.21)

What this definition in effect is saying is that in order to multiply two skew-symmetric tensors and obtain

a skew-symmetric result, all we have to do is take their tensor product and then project back into the

algebra (that is, skew-symmetrize the result)1. Since A is, by definition, a linear operator, the wedge

product is linear in each of the factors.

We have seen that the tensor product is not commutative. But, in the case of the exterior product,

exchanging the order of the factors can at most affect the sign. The general result is:

b ∧ a = (−1)rsa ∧ b, a ∈ Λr(V ), b ∈ Λs(V ). (2.22)

Thus, for example, the wedge product with itself of a multivector of odd order must necessarily vanish.

With some work, it is possible to show that the wedge product is associative, namely: (a∧b)∧c = a∧(b∧c).

To calculate the dimension of Λr(V ), we note that, being a tensor, every element in Λk(V ) is expressible

as a linear combination of the nr tensor products ei1 ⊗ ... ⊗ eir , where ei, i = 1, ..., n, is a basis of V .

Because of the skew-symmetry, however, we need to consider only products of the form ei1 ∧ ...∧eir . Two

such products involving the same factors in any order are either equal or differ in sign, and a product

with a repeated factor vanishes. This means that we need only count all possible combinations of n

symbols taken r at a time without repetition. The number of such combinations is n!
(n−r)!r! . One way

to keep track of all these combinations is to place the indices i1, ..., ik in strictly increasing order. These

combinations are linearly independent, thus constituting a basis. Therefore, the dimension of Λr(V ) is
n!

(n−r)!r! .

1In spite of the natural character of this definition of the wedge product, many authors adopt a definition that includes

a combinatorial factor. Thus, the two definitions lead to proportional results. Each definition has some advantages, but

both are essentially equivalent. Our presentation of exterior algebra follows closely that of Sternberg S (1983), Lectures on

Differential Geometry, 2nd ed., Chelsea.
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We note that the spaces of r-vectors and (n − r)-vectors have the same dimension. There is a kind of

fusiform dimensional symmetry around the middle, the dimension starting at 1 for r = 0, increasing

to a maximum towards r = n/2 (say, if n is even) and then going back down to 1 for r = n. This

observation plays an important role in the identification (and sometimes confusion) of physical quantities.

For example, an n-vector functions very much like a scalar, but with a subtle difference.

Let a skew-symmetric contravariant tensor a ∈ Λr(V ) be given by means of its components on the basis

of Cr(V ) inherited from a basis e1, ..., en of V as:

a = ai1...ir ei1 ⊗ ...⊗ eir . (2.23)

Recalling that the skew-symmetry operator Ar is linear, we obtain:

a = Ar(a) = ai1...ir Ar (ei1 ⊗ ...⊗ eir ) = ai1...ir ei1 ∧ ... ∧ eir . (2.24)

In these expressions, the summation convention is implied. We have obtained the result that, given a

skew-symmetric tensor in components, we can substitute the wedge products for the tensor products of

the base vectors. On the other hand, if we would like to express the r-vector a in terms of its components

on the basis of Λr(V ) given by the wedge products of the base vectors of V taken in strictly increasing

order of the indices, a coefficient of r! will have to be included, namely:

ai1,...ir ei1 ∧ ... ∧ eir = r!
∑

i1<...<ir

ai1,...ir ei1 ∧ ... ∧ eir . (2.25)

This means that the components on the basis (with strictly increasing indices) of the skew symmetric part

of a contravariant tensor of type (k, 0) are obtained without dividing by the factorial k! in the projection

algorithm. This, of course, is a small advantage to be gained at the expense of the summation convention.

Consider the n-fold wedge product a = v1 ∧v2 ∧ ...∧vn, where the v’s are elements of an n-dimensional

vector space V . Let {e1, e2, ..., en} be a basis of V . Since each of the v’s is expressible uniquely in this

basis we may write:

a = (vi11 ei1) ∧ (vi22 ei2) ∧ ... ∧ (vinn ein) = vi11 v
i2
2 ...v

in
n ei1 ∧ ei2 ∧ ... ∧ ein , (2.26)

where the summation convention is in full swing. Out of the possible nn terms in this sum, there are

exactly n! that can survive, since each of the indices can attain n values, but repeated indices in a term

kill it. However, since each of the surviving terms consists of a scalar coefficient times the exterior product

of all the n elements of the basis, we can collect them all into a single scalar coefficient A multiplied by

the exterior product of the base vectors arranged in a strictly increasing ordering of the indices, namely,

we must have that a = Ae1 ∧ e2 ∧ ... ∧ en. This scalar coefficient consists of the sum of all the products

vi11 v
i2
2 ...v

in
n with no repeated indices and with a minus sign if the superscripts form an odd permutation

of 1, 2, ..., n. This is precisely the definition of the determinant of the matrix whose entries are vji . We

conclude that, using in Λn(V ) the basis induced by a basis in V , the component of the exterior product

of n vectors in an n-dimensional space is equal to the determinant of the matrix of the components

of the individual vectors. Apart from providing a neat justification for the notion of determinant, this

formula correctly suggests that the geometrical meaning of an n-vector is some measure of the ability of

the (n-dimensional) parallelepiped subtended by the vectors to contain a volume. Since we have not yet

introduced any metric notion, we cannot associate a number to this volume. Notice on the other hand

that, although we cannot say how large a volume is, we can certainly tell that a given n-parallelepiped

is, say, twice as large as another. Notice, finally, that changing the order of two factors, or reversing the
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sense of one factor, changes the sign of the multivector. So, n-vectors represent oriented n-dimensional

parallelepipeds.

The collection of all multivectors of all orders (up to the dimension of V ), with the exterior product

replacing the tensor product, constitutes the exterior algebra of V . In a similar way, starting from the

dual space V ∗, we can construct the algebra of multicovectors.

3.3 Forms and general tensor fields

3.3.1 1-forms

Let f : U → R be a smooth function defined in a neighbourhood U ⊂ M of the point p, and let

dfp : TU → R denote its differential at p. We can regard this differential as an element of T ∗pM by

defining its value 〈dfp,vp〉 on any vector vp ∈ TpM as:

〈dfp,vp〉 = dfp(vp) = vp(f). (3.1)

In other words, the action of the evaluation of the differential of the function on a tangent vector is equal

to the directional derivative of the function in the direction of the vector.

A smooth assignment of a covector ωp to each point p ∈M is called a differential 1-form on the manifold.

It can be regarded as a cross section of the cotangent bundle, namely, a map:

Ω :M→ T ∗M, (3.2)

such that π ◦Ω = idM.

As we have seen, the differential of a function at a point defines a covector. It follows that a smooth

scalar function f :M→ R determines, by point-wise differentiation, a differential 1-form Ω = df . It is

important to remark that not all differential 1-forms can be obtained as differentials of functions. The

ones that can are called exact.

A differential 1-form Ω (that is, a cross section of T ∗M) can be regarded as acting on vector fields V

(cross sections of TM) to deliver functions 〈Ω,V〉 :M→ R, by point-wise evaluation of a covector on

a vector.

3.3.2 Pull-backs

Let f : N → R be a smooth function. We define its pull-back by g as the map g∗f :M→ R given by

the composition:

g∗f = f ◦ g. (3.3)

For a differential 1-form Ω on N , we define the pull-back g∗Ω :M→ T ∗M by showing how it acts, point

by point, on tangent vectors:

〈[g∗Ω](p),vp〉 = 〈Ω(g(p)), (g∗)pvp〉, (3.4)

which can be more neatly written in terms of vector fields as:

〈g∗Ω,V〉 = 〈Ω ◦ g, g∗V〉. (3.5)
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Expressed in words, this means that the pull-back by g of a 1-form in N is the 1-form inM that assigns

to each vector the value that the original 1-form assigns to the image of that vector by g∗.

It is important to notice that the pull-backs of functions and differential 1-forms are always well-defined,

regardless of the dimensions of the spaces involved. This should be contrasted with the push-forwards of

vector fields, which fail in general to be vector fields on the target manifold.

3.3.3 Tensor bundles

Given a point p of a manifold M , we may identify the vector space V with the tangent space TpM
and construct the corresponding spaces of tensors of any fixed type. Following the same procedure as

for the tangent and cotangent bundles, which will thus become particular cases, one can define tensor

bundles of any type by adjoining to each point of a manifold the tensor space of the corresponding

type. A convenient notational scheme is: Ck(M), Ck(M), respectively, for the bundles of contravariant

and covariant tensors of order k. Similarly, the bundles of k-vectors and of k-forms can be denoted,

respectively, by: Λk(M),Λk(M). Each of these bundles can be shown (by a procedure identical to that

used in the case of the tangent and cotangent bundles) to have a natural structure of a differentiable

manifold of the appropriate dimension. A (smooth) section of a tensor bundle is called a tensor field

over M, of the corresponding type. A (smooth) section of the bundle Λk(M) of k-forms is also called a

differential k-form. A scalar function on a manifold is also called a differential 0-form.

In a chart of the m-dimensional manifold M with coordinates xi, a contravariant tensor field T of order

r is given as:

T = T i1,...,ir
∂

∂xi1
⊗ ...⊗ ∂

∂xir
, (3.6)

where T i1,...,ir = T i1,...,ir (x1, ..., xm) are rm smooth functions of the coordinates. Similarly, a covariant

tensor field U of order r is given by:

U = Ui1,...,ir dx
i1 ⊗ ...⊗ dxir , (3.7)

and a differential r-form ω by:

ω = ωi1,...,ir dx
i1 ∧ ... ∧ dxir . (3.8)

Notice that, in principle, the indexed quantity ωi1,...,ir need not be specified as skew-symmetric with

respect to the exchange of any pair of indices, since the exterior product of the base-forms will do

the appropriate skew-symmetrization job. As an alternative, we may suspend the standard summation

convention in (3.8) and consider only indices in ascending order. As a result, if ωi1,...,ir is skew symmetric

ab initio, the corresponding components are to be multiplied by r!.

Of particular interest for the theory of integration on manifolds are differential m-forms, where m is the

dimension of the manifold. From our treatment of the algebra of r-forms, we know that the dimension of

the space of m-covectors is exactly 1. In a coordinate chart, a basis for differential m-forms is, therefore,

given by: dx1 ∧ ... ∧ dxm. In other words, the representation of a differential m-form ω in a chart is :

ω = f(x1, ..., xm) dx1 ∧ ... ∧ dxm, (3.9)

where f(x1, ..., xm) is a smooth scalar function of the coordinates in the patch. Consider now another

coordinate patch with coordinates y1, ..., ym, whose domain has a non-empty intersection with the domain

of the previous chart. In this chart we have:

ω = f̂(y1, ..., ym) dy1 ∧ ... ∧ dym. (3.10)
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We want to find the relation between the functions f and f̂ . Since the transition functions yi =

yi(x1, ..., xm) are smooth, we can write:

ω = f̂(y1, ..., ym) dy1 ∧ ... ∧ dym = f̂
∂y1

∂xj1
...
∂ym

∂xjm
dxj1 ∧ ... ∧ dxjm (3.11)

or, by definition of determinant:

ω = det{ ∂y
1, ..., ym

∂x1, ..., xm
}f̂ dx1 ∧ ... ∧ dxm = Jy,x f̂ dx

1 ∧ ... ∧ dxm, (3.12)

where the Jacobian determinant Jy,x does not vanish at any point of the intersection of the two coordinate

patches. Comparing with Equation (3.9), we conclude that:

f = Jy,x f̂ . (3.13)

A nowhere vanishing differentiable m-form on a manifold M of dimension m is called a volume form on

M. It can be shown that a manifold is orientable if, and only if, it admits a volume form.

The notion of pull-back can be naturally generalized for covariant tensors of any order. For a contravariant

tensor field U of order r onN (and, in particular, for differential r-forms onN ), the pull-back by a smooth

function g :M→N is a corresponding field onM obtained by an extension of the case r = 1, as follows:

g∗U (V1, ...,Vr) = (U ◦ g) (g∗V1, ..., g∗Vr), (3.14)

where U is regarded as a multilinear function of r vector fields Vi.

3.3.4 The exterior derivative

The exterior derivative of differential forms is an operation that generalizes the gradient, curl and diver-

gence operators of classical vector calculus. The exterior derivative of a differential r-form on a manifold

M is a differential (r + 1)-form defined over the same manifold. Instead of introducing, as one certainly

could, the definition of exterior differentiation in an intrinsic axiomatic manner, we will proceed to define

it in a coordinate system and show that the definition is, in fact, coordinate independent. Let, therefore,

xi (i = 1, ...,m) be a coordinate chart and let ω be an r-form given as:

ω = ωi1,...,ir dx
i1 ∧ ... ∧ dxir , (3.15)

where ωi1,...,ir = ωi1,...,ir (x
1, ..., xm) are smooth functions of the coordinates. We define the exterior

derivative of ω, denoted by dω, as the differential (r + 1)-form obtained as:

dω = dωi1,...,ir ∧ dxi1 ∧ ... ∧ dxir , (3.16)

where the d on the right-hand side denotes the ordinary differential of functions. More explicitly:

dω =
∂ωi1,...,ir
∂xk

dxk ∧ dxi1 ∧ ... ∧ dxir . (3.17)

Note that for each specific combination of (distinct) indices i1, ..., ir, the index k ranges only on the

remaining possibilities, since the exterior product is skew symmetric. Thus, in particular, if ω is a

differential m-form defined over an m-dimensional manifold, its exterior derivative vanishes identically

(as it should, being an (m+ 1)-form).



50 CHAPTER 3. DIFFERENTIAL CONSTRUCTS

Let yi (i = 1, ...,m) be another coordinate chart with a non-empty intersection with the previous chart.

We have:

ω = ω̂i1,...,ir dy
i1 ∧ ... ∧ dyir , (3.18)

for some smooth functions ω̂i1,...,ir of the yi-coordinates. The two sets of components are related by:

ωi1,...,ir = ω̂j1,...,jr
∂yj1

∂xi1
...
∂yjr

∂xir
. (3.19)

Notice that we have not troubled to collect terms by, for example, prescribing a strictly increasing order.

The summation convention is in effect. We now apply the prescription (3.16) and obtain:

dω = d

(
ω̂j1,...,jr

∂yj1

∂xi1
...
∂yjr

∂xir

)
∧ dxi1 ∧ ... ∧ dxir . (3.20)

The crucial point now is that the terms containing the second derivatives of the coordinate transformation

will evaporate due to their intrinsic symmetry, since they are contracted with an intrinsically skew

symmetric wedge product of two 1-forms. We have, therefore:

dω =
∂ω̂j1,...,jr
∂ym

∂ym

∂xk
∂yj1

∂xi1
...
∂yjr

∂xir
dxk ∧ dxi1 ∧ ... ∧ dxir , (3.21)

or, finally:

dω =
∂ω̂j1,...,jr
∂ym

dym ∧ dyj1 ∧ ... ∧ dyjr , (3.22)

which is exactly the same prescription in the coordinate system yi as Equation (3.16) is in the coordinate

system xi. This completes the proof of independence from the coordinate system.

From this definition, we can deduce a number of important properties of the exterior derivative:

(1) Linearity: d is a linear operator, viz.:

d(a α + b β) = a dα + b dβ ∀a, b ∈ R α, β ∈ Λr(M). (3.23)

(2) Quasi-Leibniz rule:

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ ∀α ∈ Λr(M), β ∈ Λs(M). (3.24)

(3) Nilpotence:

d2(.) = d(d(.)) = 0. (3.25)

Moreover, it can be shown that the exterior derivative commutes with pull-backs. Finally, the exterior

derivative of a 1-form has the following interesting interaction with the Lie bracket. If α is a differential

1-form and u and v are smooth vector fields on a manifold M, then:

〈dα | u ∧ v〉 = u (〈α | v〉)− v (〈α | u〉)− 〈α | [u,v]〉. (3.26)

A differential form ω is closed if dω = 0. Thus, all m-forms in an m-dimensional manifold are automat-

ically closed. An r-form (with r > 1) is exact if there exists an (r − 1)-form σ such that ω = dσ. By

Property 3 above, all exact forms are closed. The converse is true locally. In other words, for every point

in a manifold there exists an open neighbourhood on which the restriction of a closed form is exact. But

this property may fail globally. An example is the 1-form given by ω = (x dy − y dx)/(x2 + y2) defined

on an annular region of R2
with centre at the origin x = y = 0. This form is closed but not exact.

The existence of forms of this type reflects the presence of topological invariants (such as holes) in the

manifold.
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3.3.5 The flow of a vector field

Let V :M→ TM be a (smooth) vector field. A (parametrized) curve γ : H →M is called an integral

curve of the vector field if its tangent at each point coincides with the vector field at that point. In other

words, denoting by s the curve parameter, the following condition holds:

dγ(s)

ds
= V(γ(s)) ∀s ∈ H ⊂ R. (3.27)

As a consequence of the fundamental theorem of existence and uniqueness of local solutions of systems of

ordinary differential equations, it is possible to prove the following fundamental theorem for vector fields

on manifolds.

Theorem 3.3.1 If V is a vector field on a manifold M, then for every p ∈ M there exists an integral

curve γ(s, p) : Ip → M such that: (i) Ip is an open interval of R containing the origin s = 0; (ii)

γ(0, p) = p; and (iii) Ip is maximal in the sense that there exists no integral curve starting at p and

defined on an open interval of which Ip is a proper subset. Moreover,

γ(s, γ(s′, x)) = γ(s+ s′, x) ∀s, s′, s+ s′ ∈ Ip. (3.28)

The map given by:

p, s 7→ γ(s, p), (3.29)

is called the flow of the vector field V whose integral curves are γ(s, p). In this definition, the map

is expressed in terms of its action on pairs of points belonging to two different manifolds, M and R,

respectively. Not all pairs, however, are included in the domain, since Ip is not necessarily equal to

R. Moreover, since the intervals Ip are point dependent, the domain of the flow is not even a product

manifold. One would be tempted to take the intersection of all such intervals so as to work with a product

manifold given byM times the smallest interval Ip. Unfortunately, as we know from elementary calculus,

this (infinite) intersection may consist of a single point. All that can be said about the domain of the flow

is that it is an open subset of the Cartesian product M×R. When the domain is equal to this product

manifold, the vector field is said to be complete and the corresponding flow is called a global flow. It can

be shown that ifM is compact, or if the vector field is smooth and vanishes outside a compact subset of

M, the flow is necessarily global.

3.3.6 One-parameter groups of transformations generated by flows

Given a point p0 ∈ M it is always possible to find a small enough neighbourhood U(p0) ⊂M such that

the intersection of all the intervals Ip with p ∈ U(p0) is an open interval J containing the origin. For

each value s ∈ J , the flow γ(s, p) can be regarded as a map:

γs : U(p0) −→M, (3.30)

defined as:

γs(p) = γ(s, p), p ∈ U(p0). (3.31)

This map is clearly one-to-one, since otherwise we would have two integral curves intersecting each

other, against the statement of the fundamental theorem. Moreover, again according to the fundamental

theorem, this is a smooth map with a smooth inverse over its image. The inverse is, in fact, given by:

γ−1s = γ−s, (3.32)



52 CHAPTER 3. DIFFERENTIAL CONSTRUCTS

where γ−s is defined over the image γs(U(p0)). Notice that γ0 is the identity map of U(p0). Finally, for

the appropriate range of values of s and r, we have the composition law:

γr ◦ γs = γr+s. (3.33)

The set of maps γs is said to constitute the one-parameter local pseudo-group generated by the vector

field (or by its flow). If the neighbourhood U(p0) can be extended to the whole manifold for some open

interval J (no matter how small), each map γs is called a transformation of M. In that case we speak

of a one-parameter pseudo-group of transformations of M. Finally, in the best of all possible worlds, if

J = R the one-parameter subgroup of transformations becomes elevated to a one-parameter group of

transformations.2 This is an Abelian (i.e., commutative) group, as is clearly shown by the composition law

(3.33). We may say that every complete vector field generates a one-parameter group of transformations

of the manifold.

The converse construction, namely the generation of a vector field out of a given one-parameter pseudo-

group of transformations, is also of interest. It can be shown that every one-parameter pseudo-group of

transformations γs is generated by the vector field:

V(p) =
dγs(p)

ds
|s=0. (3.34)

3.4 Lie derivatives, Lie groups

3.4.1 The Lie derivative

We have learned that a vector field determines at least a one-parameter pseudo-group in a neighbourhood

of each point of the underlying manifold. For each value of the parameter s within a certain interval

containing the origin, this neighbourhood is mapped diffeomorphically onto another neighbourhood.

Having at our disposal a diffeomorphism, we can consider the pushed-forward or pulled-back versions of

tensors of every type, including multivectors and differential forms. Physically, these actions represent

how the various quantities are convected (or dragged) by the flow. To elicit a mental picture, we show in

Figure 3.3 a vector wp in a manifold as a small segment −→pq (a small piece of a curve, say), and we draw

the integral curves of a vector field V emerging from each of its end points, p and q. These curves are

everywhere tangent to the underlying vector field V, which we do not show in the figure. If s denotes the

(natural) parameter along these integral curves, an increment of ∆s applied from each of these points

along the corresponding integral curve, will result in two new points p′ and q′, respectively. The (small)

segment
−→
p′q′ can be seen as a vector w′, which we regard as the convected counterpart of wp as it is

dragged by the flow of V by an amount ∆s. If wp happens to be part of a vector field W defined in a

neighbourhood of p′, so that wp = W(p), we have that at the point p′ there is, in addition to the dragged

vector w′, a vector W(p′). There is no reason why these two vectors should be equal. The difference

W(p′)−w′ (divided by ∆s) gives us an idea of the meaning of the Lie derivative of W with respect to

V at p′.

The idea behind the definition of the Lie derivative of a tensor field with respect to a given vector field

at a point p is the following. We consider a small value s of the parameter and convect the tensor field

back to s = 0 by using the appropriate pull-back or push-forward. This operation will, in particular,

2The general notion of group will be reviewed below.
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Figure 3.3: Dragging of a vector by a flow

provide a value of the convected tensor field at the point p. We then subtract from this value the original

value of the field at that point (a legitimate operation, since both tensors operate on the same tangent

and/or cotangent space), divide by s and compute the limit as s → 0. To understand how to calculate

a Lie derivative, it is sufficient to make the definition explicit for the case of functions, vector fields and

one-forms. The general case is then inferred from these three basic cases, as we shall demonstrate. We

will also prove that the term “derivative” is justified. Notice that a Lie derivative is defined with respect

to a given vector field. It is not an intrinsic property of the tensor field being differentiated. The Lie

derivative of a tensor field at a point is a tensor of the same type.

The Lie derivative of a scalar

Let g : M → N be a mapping between two manifolds and let f : N → R be a function. Recall that,

according to Equation (3.3), the pull-back of f by g is the map g∗f :M→ R defined as the composition:

g∗f = f ◦ g. (4.1)

Let a (time-independent, for now) vector field V be defined onM and let γs : U →M denote the action

of its flow on a neighbourhood of a point p ∈M. If a function f :M→ R is defined, we can calculate:

γ∗sf := f ◦ γs. (4.2)

The Lie derivative at the point p is given by:

LV f(p) := lim
s→0

(γ∗sf)(p)− f(p)

s
= lim
s→0

f(γs(p))− f(p)

s
(4.3)

Thus, we obtain

LV f(p) = vp(f). (4.4)

In simple words, the Lie derivative of a scalar field with respect to a given vector field coincides, at each

point, with the directional derivative of the function in the direction of the field at that point.

The Lie derivative of a vector field

Vectors are pulled forward by mappings. Thus, given the map g : M → N , to bring a tangent vector

from N back to M, we must use the fact that g is invertible and that the inverse is differentiable, such

as when g is a diffeomorphism. Let W : N → TN be a vector field on N . The corresponding vector field
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on M is then given by g−1∗ ◦W ◦ g : M → TM. Accordingly, the Lie derivative of the vector field W

with respect to the vector field V, with flow γs, at a point p ∈M is defined as:

LV W(p) = lim
s→0

γ−1s∗ ◦W ◦ γs(p)−W(p)

s
. (4.5)

It can be shown that the Lie derivative of a vector field coincides with the Lie bracket:

LV W = [V,W]. (4.6)

The Lie derivative of a one-form

Since one-forms are pulled back by a map, we define the Lie derivative of the one form ω :M→ T ∗M
at the point p as:

LV ω(p) = lim
s→0

γ∗s ◦ ω ◦ γs(p)− ω(p)

s
. (4.7)

The Lie derivative of arbitrary tensor fields

It is clear that, by virtue of their definition by means of limits, the Lie derivatives defined so far are linear

operators. To extend the definition of the Lie derivative to tensor fields of arbitrary order, we need to

make sure that the Leibniz rule with respect to the tensor product is satisfied. Otherwise, we wouldn’t

have the right to use the term “derivative” to describe it. It is enough to consider the case of a monomial

such as:

T = ω1 ⊗ ...⊗ ωm ⊗W1 ⊗ ...⊗Wn, (4.8)

where ωi are m 1-forms and Wj are n vector fields. We define:

LV T(p) = lim
s→0

γ∗s ◦ ω1 ◦ γs(p)⊗ ...⊗ γ−1s∗ ◦W1 ◦ γs(p)⊗ ...−T(p)

s
. (4.9)

Let us verify the satisfaction of the Leibniz rule for the case of the tensor product of a one-form by a

vector:

LV (ω ⊗W)(p) = lim
s→0

γ∗s ◦ ω ◦ γs(p)⊗ γ−1s∗ ◦W ◦ γs(p)⊗−ω(p)⊗W(p)

s
. (4.10)

Subtracting and adding to the denominator the expression ω(p)⊗γ−1s∗ ◦W◦γs(p) the Leibniz rule follows

suit.

An important property of the Lie derivative is the following: The Lie derivative of a differential form (of

any order) commutes with the exterior derivative, i.e.:

LV (dω) = d(LV ω), (4.11)

for all vector fields V and for all differential forms ω.

The Lie derivative in components

Taking advantage of the Leibniz rule, it is not difficult to calculate the components of the Lie derivative

of a tensor in a given coordinate system xi, provided the components of the Lie derivative of the base
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vectors ∂
∂xi and the base one-forms dxi are known. A direct application of the formula (2.10) for the

components of the Lie bracket, yields:

LV

(
∂

∂xi

)
= −∂V

k

∂xi
∂

∂xk
. (4.12)

To obtain the Lie derivative of dxi we recall that the action of dxi (as a covector) on ∂
∂xj is simply δij ,

whose Lie derivative vanishes. This action can be seen as the contraction of their tensor product. We

obtain, therefore:

0 = LV 〈dxi,
∂

∂xj
〉 = 〈dxi,−∂V

k

∂xj
∂

∂xk
〉+ 〈Lvdxi,

∂

∂xj
〉, (4.13)

whence:

LV dx
i =

∂V i

∂xk
dxk. (4.14)

3.4.2 One-parameter subgroups of a Lie group

A topological group is a Lie group if its underlying set is smooth manifold and the group operations are

smooth. A one-parameter subgroup of a Lie group G is a differentiable curve:

γ : R −→ G

t 7→ g(t), (4.15)

satisfying:

g(0) = e, (4.16)

and

g(t1) g(t2) = g(t1 + t2) ∀t1, t2 ∈ R. (4.17)

If the group G acts (on the left, say) on a manifoldM, the composition of this action with a one-parameter

subgroup determines a one-parameter group of transformations of M, namely:

γt(p) = Lg(t)(p) p ∈M. (4.18)

From Equation (3.34), we know that associated with this flow there exists a unique vector field vγ . More

precisely, we have:

vγ(p) =
dγt(p)

dt

∣∣∣∣
t=0

(4.19)

Fixing the point p, we obtain the map Lp from the group to the manifold. The image of the curve γ

under this map is obtained by composition as:

t 7→ Lp(g(t)) = L(g(t), p) = Lg(t)(p) = γt(p), (4.20)

where we have used Equation (4.18). In other words, the image of the curve γ (defining the one-parameter

subgroup) by the map Lp is nothing but the integral curve of the flow passing through p. By definition

of derivative of a map between manifolds, we conclude that the tangent g to the the one parameter

subgroup γ at the group identity e is mapped by Lp∗ to the vector vγ(p):

vγ(p) = (Lp∗)e g. (4.21)
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This means that a one-parameter subgroup g(t) appears to be completely characterized by its tangent

vector g at the group identity. We will shortly confirm this fact more fully. The vector field induced on

M by a one-parameter subgroup is called the fundamental vector field associated with the corresponding

vector g at the group identity.

Let us now identify the manifold M with the group G itself. In this case, we have, as already discussed,

two canonical actions giving rise to the left and right translations of the group. We want to reinterpret

Equation (4.21) in this particular case. For this purpose, and to avoid the notational ambiguity alluded

to above, we restore the fully fledged notation for the action as a function of two variables. We thus

obtain:

vγ(h) =

(
∂L(g, h)

∂g

)
g=e

g. (4.22)

Notice that, somewhat puzzlingly, but consistently, this can also be written as:

vγ(h) = (Rh∗)e g. (4.23)

Thus, when defining the action of a one-parameter subgroup from the left, it is the right action whose

derivative delivers the corresponding vector field, and viceversa.

3.4.3 Left and right invariant vector fields on a Lie group

A vector field v : G → TG is said to be left invariant if:

v(Lgh) = Lg∗v(h) ∀g, h ∈ G. (4.24)

In other words, vectors at one point are dragged to vectors at any other point by the derivative of the

appropriate left translation. A similar definition, but replacing L with R applies to right invariant vector

fields.

A vector field is left invariant if, and only if:

v(g) = (Lg∗)e v(e) ∀g ∈ G. (4.25)

Another way of expressing this result is by saying that there exists a one-to-one correspondence between

the set of left (or right) invariant vector fields on G and the tangent space TeG at the group identity. This

correspondence is linear. Moreover, one can show that the Lie bracket of two left- (right-) invariant vector

fields is itself left- (right-) invariant. The set g of left invariant vector fields (or, equivalently, the tangent

space TeG) with the Lie bracket operation is called the Lie algebra of the group G. From an intuitive

point of view, the elements of the Lie algebra of a Lie group represent infinitesimal approximations, which

Sophus Lie himself called infinitesimal generators of the elements of the group. Although the infinitesimal

generators are in principle commutative (sum of vectors), the degree of non-commutativity of the actual

group elements is captured, to first order, by the Lie bracket.

3.5 Integration

3.5.1 Integration of n-forms in Rn

The simplest n-dimensional manifold is Rn
itself with the standard topology and the standard notion

of differentiability. Accordingly, we present the standard notion of integration over a domain of Rn
in

terms of differential forms so as to be able to extend this notion to arbitrary manifolds.
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Let x1, ..., xn be the standard global chart of Rn
, and let ω be a smooth n-form defined over some open

set D ⊂ Rn
. There exists, then, a smooth function f : D → R such that:

ω = f dx1 ∧ ... ∧ dxn. (5.1)

For any regular domain of integration A ⊂ D we define:∫
A

ω :=

∫ ∫
...

∫
︸ ︷︷ ︸

A

fdx1dx2...dxn, (5.2)

where the right-hand side is the ordinary n-fold Riemann integral in Rn
.

It is important to check that this definition is independent of the coordinate system adopted in D. For

this purpose, let:

φ : D −→ Rn
, (5.3)

be a coordinate transformation expressed in components as the n smooth functions:

x1, ..., xn 7→ y1(x1, ..., xn), ..., yn(x1, ..., xn). (5.4)

Recall that for (5.4) to qualify as a coordinate transformation, the Jacobian determinant:

J = det

[
∂(y1, ..., yn)

∂(x1, ..., xn)

]
, (5.5)

must be non-zero throughout D. For definiteness, we will assume that it is strictly positive (so that the

change of coordinates is orientation preserving). According to the formulas of transformation of variables

under a multiple Riemann integral, we must have:∫ ∫
...

∫
︸ ︷︷ ︸

A

f(xi) dx1...dxn =

∫ ∫
...

∫
︸ ︷︷ ︸

A

f(xi(yj)) J−1dy1...dyn. (5.6)

But, according to Equation (3.13) the representation of ω in the new coordinate system is precisely:

ω = f(xi(yj)) J−1dy1 ∧ ... ∧ dyn, (5.7)

which shows that the definition (5.2) is indeed independent of the coordinate system adopted in D.

A more fruitful way to exploit the coordinate independence property is to regard φ : D → Rn
not as a

mere coordinate transformation but as an actual change of the domain of integration. In this case, the

transformation formula is interpreted readily in terms of the pull-back of ω as:∫
φ(A)

ω =

∫
A

φ∗(ω), (5.8)

for every n-form ω defined over an open set containing φ(A).

3.5.2 Integration of forms on oriented manifolds

Let M be an oriented m-dimensional manifold and let (U , ψ) be a (consistently) oriented chart. The

integral of an m-form ω over U is defined as:∫
U

ω :=

∫
ψ(U)

(
ψ−1

)∗
ω. (5.9)
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Notice that the right-hand side is a standard Riemann (or Lebesgue) integral of a function in Rm
,

according to Equation (5.2). In other words, given an m-form defined over the domain of a chart in an

m-dimensional manifold, we simply pull back this form to the codomain of the chart (an open subset of

Rm
) and integrate. The result is independent of the chart used.

To integrate over a domain covered by more than one chart, we need to use the concept of partition

of unity, whose detailed presentation we omit. Briefly and imprecisely stated, a partition of unity is a

collection of real-valued non-negative smooth functions, one for each of the members of an open cover

and vanishing outside it. Moreover, we assume that the cover is locally finite, in the sense that each point

of the manifold belongs to only a finite number of members of the cover. Finally, the (finite) sum of all

these functions at each point is equal to 1 (hence the name). It can be shown that partitions of unit

exist provided the manifold is paracompact, namely, it admits a locally finite cover. Denoting by φi the

functions making up the partition of unity, we define the integral as:∫
M

ω =
∑
i

∫
M

φiω, (5.10)

where the integrand on the right-hand side is just the product of a function times a differential form.

Each integral on the right-hand side is well defined by (5.9).

For the definition implied by Equation (5.10) to make sense, we must prove that the result is independent

of the choice of charts and of the choice of partition of unity. This can be done quite straightforwardly

by expressing each integral of the right-hand side of one choice in terms of the quantities of the second

choice, and viceversa.

3.5.3 Stokes’ theorem

The boundary of an n-dimensional manifoldM will denoted by ∂M, which we consider as a manifold of

dimension n − 1. For example, M may be an open ball in Rn
and ∂M the bounding spherical surface.

The boundary of an oriented manifold can be consistently oriented. Given an (n − 1)-form ω on M, it

makes sense to calculate its integral over the (oriented) boundary ∂D. Stokes’ theorem asserts that:∫
∂D

ω =

∫
D

dω. (5.11)

We omit the proof and limit ourselves to remark that this elegant formula encompasses all the integral

theorems of ordinary vector calculus.

3.6 Distributions and the theorem of Frobenius

We have mentioned in Section ?? the notion of curvature of a connection as an indication of how the

parallel transport of an entity along a curve depends on the curve itself. Before giving a precise definition

of this concept, however, it may prove useful to introduce the more general concept of involutivity of a

distribution. The reason for this digression is that a connection can always be regarded as a (horizontal)

distribution. A k-dimensional distribution of an m-dimensional manifold M (with m ≥ k) is defined as

a smooth assignment of a k-dimensional subspace Dx of the tangent space TxM to each point x ∈ M.

A fundamental question in the theory of distributions is whether or not there exist integral embedded
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submanifolds, namely, embedded submanifolds of dimension k whose tangent space at each point x

coincides with Dx.

An embedded submanifold of dimension k is defined as a subset S ⊂ M such for each point s ∈ S one

can find a chart of M with coordinates xi (i = 1, ...,m) such that s belongs to this chart and such that

the intersection of the set S with the chart coincides with the set obtained by keeping the last m − k
coordinates constant. This idea becomes clear if one thinks of the particular case of R2

as embedded in

R3
with coordinates x, y, z. The equation of the embedded submanifold R2

can be given as z = 0.

In some sense, the question of existence of integral submanifolds can be regarded as a generalization to

many dimensions of the question of integrability of systems of ordinary differential equation, which would

correspond to the case k = 1, namely to the case in which the subspaces of the distribution are mere lines.

While in the particular case k = 1 we are assured, by the fundamental theorem of ODEs, of the (local)

existence of integral curves, the answer in the general case k > 1 is usually negative. A k-dimensional

distribution is said to be completely integrable if for each point of the manifold M there exists a chart

xi (i = 1, ...,m) such that each set obtained by keeping the last n − k coordinates thereat constant is

an integral submanifold (of dimension k). Assume that a completely integrable distribution has been

given. Then, according to our definition, the first k natural vectors of the local coordinate system just

described belong to the distribution and constitute a basis of Dx at each point x in the chart. Any vector

fields vα (α = 1, ..., k) with this property (of constituting a basis of the distribution) is said to span the

distribution. Within the chart, any vector fields vα (α = 1, ..., k) that span the distribution must be

expressible, therefore, as

vα = v β
α

∂

∂xβ
, (6.1)

where the summation convention applies for Greek indices within the range 1, ..., k. We now calculate

the Lie bracket of any pair of the spanning vectors as

[vα,vβ ] = v ρ
α

∂v σ
β

∂xρ
∂

∂xσ
− v σ

β

∂v ρ
α

∂xσ
∂

∂xρ
. (6.2)

Notice that, in calculating the Lie brackets, we have used the fact that the components of the vectors

vα vanish on the natural base vectors ∂/∂xi with i > k. Moreover, since the given vectors are linearly

independent, the matrix with entries v β
α is nonsingular. Inverting, therefore, Equation (6.1), we can

express the natural base vectors ∂/∂xα (α = 1, ..., k) in terms of the vectors vβ , with the result that the

Lie brackets are themselves linear combinations of these vectors, namely, there exist scalars Cγαβ such

that

[vα,vβ ] = Cγαβ vγ. (6.3)

A distribution with this property (namely, that the Lie bracket of any two vector fields in the distribution

is also in the distribution) is said to be involutive. We have proven, therefore, that every completely

integrable distribution is involutive. The converse of this result (that is, that every involutive distribution

is completely integrable) is also true, and is the content of the theorem of Frobenius, whose prove we

omit.

3.7 Connections

3.7.1 Introduction

All the fibres of a fibre bundle are, by definition, diffeomorphic to each other. In the absence of additional

structure, however, there is no canonical way to single out a particular diffeomorphism between fibres.
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In the case of a product bundle, for example, such a special choice is indeed available because of the

existence of the second projection map onto the typical fibre. In this extreme case, we may say that we

are in the presence of a canonical distant parallelism in the fibre bundle. An equivalent way to describe

this situation is by saying that we have a canonical family of non-intersecting smooth cross sections such

that each point in the fibre bundle belongs to one, and only one, of them. In a general fibre bundle we can

only afford this luxury non-canonically and locally. A connection on a fibre bundle is, roughly speaking,

an additional structure defined on the bundle that permits to establish intrinsic fibre diffeomorphisms

for fibres lying along curves in the base manifold. In other words, a connection can be described as a

curve-dependent parallelism. Given a connection, it may so happen that the induced fibre parallelisms

turn out to be curve-independent. A quantitative measure of this property or the lack thereof is provided

by the vanishing, or otherwise, of the curvature of the connection.

3.7.2 Ehresmann connection

Consider the tangent bundle TC of the total space C of an arbitrary fibre bundle (C, π,B,F ,G), and

denote by τC : TC → C its natural projection. If the dimension of the base manifold B and the typical

fibre F are, respectively, m and n, the dimension of C is m+n, and the typical fibre of (TC, τC) is Rm+n
,

with structure group GL(m+n;R). At each point c ∈ C the tangent space TcC has a canonically defined

vertical subspace Vc, which can be identified with the tangent space TcCπ(c) to the fibre of C at c. The

dimension of Vc is n. A vector in TcC belongs to the vertical subspace Vc (or: is vertical) if, and only if, its

projection by π∗ is the zero vector of Tπ(c)B. If a vector in TcC is not vertical, there is no canonical way

to assign to it a vertical component. It is this deficiency, and only this deficiency, that the Ehresmann

connection remedies. Formally, an Ehresmann connection consists of a smooth horizontal distribution in

C. This is a smooth assignment to each point c ∈ C of an (m-dimensional) subspace Hc ⊂ TcC (called the

horizontal subspace at c), such that:

TcC = Hc + Vc. (7.1)

In this equation, + denotes the direct sum of vector spaces. Each tangent vector u ∈ TcC is, accordingly,

uniquely decomposable as the sum of a horizontal part h(u) and a vertical part v(u). A vector is

horizontal, if its vertical part vanishes. The only vector that is simultaneously horizontal and vertical is

the zero vector. Since Hc and Tπ(c)B have the same dimension (m), the restriction π∗|Hc : Hc → Tπ(c)B,

is a vector-space isomorphism. We denote its inverse by Γc. Thus, given a vector v tangent to the base

manifold at a point b ∈ B, there is a unique horizontal vector: Γcv at c ∈ π−1({b}) such that π∗(Γcv) = v.

This unique vector is called the horizontal lift of v to c. In particular: Γc (π∗(u)) = Γc (π∗(h(u))) = h(u).

These ideas are schematically illustrated in Figure 3.4.

3.7.3 Parallel transport along a curve

Let:

γ : (−ε, ε) −→ B (7.2)

be a smooth curve in the base manifold B of the fibre bundle (C, π), and let c ∈ Cγ(0) be a point in the

fibre at γ(0). A horizontal lift of γ through c is defined as a curve:

γ̂ : (−ε, ε) −→ C, (7.3)
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Figure 3.4: Ehresmann connection

such that:

γ̂(0) = c, (7.4)

π (γ̂(t)) = γ(t), ∀t ∈ (−ε, ε), (7.5)

and

γ̂′(t) ∈ Hγ̂(t) ∀t ∈ (−ε, ε), (7.6)

where a prime denotes the derivative with respect to the curve parameter t. A horizontal lift is thus a

curve that projects onto the original curve and, moreover, has a horizontal tangent throughout.

Consider the “cylindrical” subbundle γ∗C obtained by pulling back the bundle C to the curve γ or, less

technically, by restricting the base manifold to the curve γ. The tangent vector field of γ has a unique

horizontal lift at each point of this bundle. In other words, the curve generates a (horizontal) vector field

throughout this restricted bundle. By the fundamental theorem of the theory of ODEs, it follows that, at

least for small enough ε, there is a unique horizontal lift of γ through any given point in the fibre at γ(0),

namely, the corresponding integral curve of the horizontal vector field. We conclude, therefore, that the

horizontal lift of a curve through a point in a fibre bundle exists and is locally unique. As the horizontal

curve issuing from c cuts the various fibres lying on γ, the point c is said to undergo a parallel transport

relative to the given connection and the given curve. Thus, given a point c ∈ C and a curve γ through

π(c) ∈ B, we obtain a unique parallel transport of c along γ by solving a system of ODEs (so as to travel

always horizontally). These concepts are illustrated schematically in Figure 3.5

3.7.4 Connections in principal bundles

A connection in a principal bundle (P, π,B,G,G) is an Ehresmann connection which is compatible with

the right action Rg of G on P, namely:

(Rg)∗(Hp) = HRgp ∀g ∈ G p ∈ P. (7.7)

This condition can be stated verbally as follows: the horizontal distribution is invariant under the group

action.
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Figure 3.5: Parallel transport along a curve

Recall that the group G acts freely (to the right) on P. Consequently, the fundamental vector field

vg associated with any non-zero vector g in the Lie algebra g of G does not vanish anywhere on P.

Moreover, since the action of G maps fibres into themselves, the fundamental vector fields are all vertical.

The correspondence between vectors in the Lie algebra and tangent vectors to the fibre at any point

is clearly linear and one-to-one. Since the dimension of G is equal to the dimension of each fibre, we

conclude that the map g→ Vp given by: g 7→ vg(p) is a linear isomorphism between the Lie algebra and

each of the vertical subspaces of the principal bundle.

Let v ∈ TP be any tangent vector to the fibre bundle. A connection Γ assigns to it a unique vertical

part and, as we have just seen, the action of the group assigns to this vertical part an element of the Lie

algebra g. This means that we have a well-defined linear map:

ω : TP −→ g, (7.8)

associated with a given connection in a principal bundle. This map can be regarded as a Lie-algebra

valued 1-form. It is called the connection form associated with Γ.

3.7.5 Curvature

Suppose that we draw through a point b of the base manifold B a small closed curve γ. If we now choose a

point p in the fibre on b, we have learned that there exists a unique horizontal lift γ̃, namely, a horizontal

curve containing p and projecting on γ. Is this curve closed? To clarify the meaning of this question and

its possible answer, recall that a connection on a principal fibre bundle is a special case of a distribution,

which we have called horizontal (the dimension of the horizontal distribution equals the dimension of

the base manifold and is thus strictly smaller than the dimension of the fibre bundle, assuming that the

typical fibre is of dimension greater than zero). Clearly, if the horizontal distribution is involutive, any

horizontal lift of a small curve in the base manifold will lie entirely on an integral surface and, therefore,

will be closed. This observation suggests that a measure of the lack of closure of the horizontal lift of

closed curves is the fact that the Lie bracket between horizontal vector fields has a vertical component.

We want to see now how to extract this information from the connection itself. More particularly, since

a connection is specified by its connection form ω, we want to extract this information from ω alone.
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Consider two horizontal vector fields u and v. Let us evaluate the 2-form3 dω on this pair. Using

Equation (3.26) we obtain:

〈dω | u ∧ v〉 = u (〈ω | v〉)− v (〈ω | u〉)− 〈ω | [u,v]〉, (7.9)

which, in view of the fact that u and v are assumed to be horizontal, yields:

〈dω | u ∧ v〉 = −〈ω | [u,v]〉. (7.10)

The right-hand side of this equation will vanish if, and only if, the Lie bracket is horizontal. This means

that we have found a way to extract the right information from ω by just taking its exterior derivative

and applying it to two horizontal vector fields. Notice, however, that dω can be applied to arbitrary

pairs of vector fields, not necessarily horizontal. To formalize this point, given a connection, we define

the exterior covariant derivative Dα of an r-form α as the (r + 1)-form given by:

〈Dα | U1 ∧ ... ∧Ur+1〉 = 〈dα | h(U1) ∧ ... ∧ h(Ur+1)〉, (7.11)

where h(.) denotes the horizontal component of a vector. Accordingly, we define the curvature 2-form Ω

of a connection ω on a principal fibre bundle as:

Ω := Dω. (7.12)

3.7.6 Cartan’s structural equation

Our definition of curvature, by using both the connection 1-form and the horizontal projection map, is

a hybrid that mixes both (equivalent) definitions of a connection. It is possible, on the other hand, to

obtain an elegant formula that involves just the connection 1-form. This formula, known as Cartan’s

structural equation, reads:

Ω = dω +
1

2
[ω, ω], (7.13)

or, more precisely, for any two vectors U and V at a point4 of the frame bundle:

〈Ω | U ∧V〉 = 〈dω | U ∧V〉+
1

2
[ω(U), ω(V)]. (7.14)

The proof of this formula, whose details we omit, is based on a careful examination of three cases: (i)

U and V are horizontal, whereby the formula is obvious; (ii) U is horizontal and V is vertical, in which

case one can extend them, respectively, to a horizontal and a fundamental (vertical) vector field; (iii) U

and V are both vertical, in which case they can both be extended to fundamental fields.

3.7.7 Bianchi identities

Unlike the ordinary exterior derivative d, the operator D (of exterior covariant differentiation) is not

necessarily nilpotent, namely, in general D2 6= 0. Therefore, there is no reason to expect that DΩ, which

is equal to D(Dω), will vanish identically. But in fact it does. To see that this is the case, notice that,

by definition of D, we need only verify the vanishing of DΩ on an arbitrary triple of horizontal vectors.

It can be shown that:

DΩ = 0. (7.15)

In terms of components, we obtain differential identities to be satisfied by any curvature form. They are

known as the Bianchi identities.
3Notice that this is a Lie-algebra valued differential form.
4Notice that this formula is valid point-wise, since the Lie bracket on the right-hand side is evaluated in the Lie algebra,

not in the manifold.
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3.7.8 Linear connections

A connection on the bundle of linear frames FB is called a linear connection on B. Among principal

bundles, the bundle of linear frames occupies a special position for various reasons. In the first place, the

bundle of linear frames is canonically defined for any given base manifold B. Moreover, the associated

bundles include all the tensor bundles, thus allowing for a unified treatment of all such entities. Another

way to express this peculiar feature of the bundle of linear frames is that, whereas the quantities parallel-

transported along curves in a general principal bundle are of a nature not necessarily related to the base

manifold, in the case of the bundle of linear frames the quantities transported are precisely the very

frames used to express the components of vectors and forms defined on the base manifold. An elegant

manifestation of this property is the existence of a canonical 1-form that ties everything together. A direct

consequence of the existence of this 1-form is the emergence of the idea of the torsion of a connection.

We start the treatment of linear connections by lingering for a while on the definition of the canonical

1-form.

3.7.9 The canonical 1-form

Given a tangent vector v ∈ TxB at a point x in the base manifold, and a point p ∈ FxB in the fibre over

x, and recalling that p consists of a frame (or basis) {e1, ..., em} of TxB, we can determine uniquely the

m components of v in this frame, namely:

v = vaea. (7.16)

In other words, at each point p ∈ FB, we have a well-defined non-singular linear map5:

u(p) : Tπ(p)B −→ Rm
. (7.17)

The canonical 1-form θ on FB is defined as:

θ(V) := u(p) ◦ π∗(V) ∀ V ∈ Tp(FB). (7.18)

Note that this is an Rm
-valued form. The canonical 1-form of the frame bundle is a particular case of a

more general construct known as a soldering form.

It may prove instructive to exhibit the canonical form in components. Let x1, ..., xm be a local coordinate

system on U ⊂ B. Every frame {e1, ..., em} at x ∈ U can be expressed uniquely by means of a non-singular

matrix with entries xij as:

ea = xia
∂

∂xi
. (7.19)

This means that the m+m2 functions {xi, xia} constitute a coordinate system for the linear frame bundle

π−1(U). We call it the coordinate system induced by xi. The projection map π : FB → B has the

coordinate representation:

(xi, xia) 7→ π(xi, xia) = (xi), (7.20)

with some notational abuse.

Consider now the tangent bundle TF (B) with projection τ : TF (B) → F (B). The coordinate system

{xi, xia} induces naturally a coordinate system in TF (B). A vector X ∈ TF (B) is expressed in these

coordinates as follows:

X 7→
(
xi, xia, X

i ∂

∂xi
+Xi

a

∂

∂xia

)
=
(
xi, xia, X

i, Xi
a

)
. (7.21)

5This map is, in fact, an alternative definition of a linear frame at a point of a manifold B.
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The derivative of the projection π is a map: π∗TF (B)→ TB. Its coordinate representation is:(
xi, xia, X

i, Xi
a

)
7→
(
xi, Xi

)
. (7.22)

The map u defined in Equation (7.17) is given in coordinates by:

[u(xi, xia)](xj , wj) = x−ai wi (a = 1, ...,m), (7.23)

where we have denoted by x−ai the entries of the inverse of the matrix with entries xia. Combining (7.22)

and (7.23), we obtain from (7.18) the following coordinate representation of the (Rm
)-valued canonical

form θ:

θa = x−ai dxi (a = 1, ...,m). (7.24)

3.7.10 The Christoffel symbols

The canonical form θ exists independently of any connection. Let us now introduce a connection on

F (B), that is, a linear connection on B. If we regard a connection as a horizontal distribution, there

must exist non-singular linear maps Γ(x, p) from each TxB to each of the tangent spaces TpF (B) (with

π(p) = x) defining the distribution. Noticing that the same distribution may correspond to an infinite

number of such maps, we pin down a particular one by imposing the extra condition that they must be

also horizontal lifts. In other words, we demand that:

π∗ ◦ Γ(x, p) = idTxB. (7.25)

The implication of this condition is that, when written in components, we must have:

Γ(x, p)

(
vi

∂

∂xi

)
= vi

∂

∂xi
− Γ̂jia(x, p) vi

∂

∂xja
, (7.26)

where Γ̂jia(x, p) are smooth functions of x and p. The minus sign is introduced for convenience.

These functions, however, cannot be arbitrary, since they must also satisfy the compatibility condition

(7.7). It is not difficult to verify that this is the case if, and only if, the functions Γjik defined by:

Γjik := Γ̂jia(x, p) x−ak (p), (7.27)

are independent of p along each fibre.

We conclude that a linear connection is completely defined (on a given coordinate patch) by means of

m3 smooth functions. These functions are known as the Christoffel symbols of the connection.

3.7.11 Parallel transport and the covariant derivative

Now that we are in possession of explicit coordinate expressions for the horizontal distribution, we can

write explicitly the system of ODEs that effects the horizontal lift of a curve in B. A solution of this

system is a one-parameter family of frames being parallel-transported along the curve. Let the curve γ

in the base manifold be given by:

xi = xi(t). (7.28)
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On this curve, the connection symbols are available as functions of t, by composition. The non-trivial

part of the system of equations is given by:

dxia(t)

dt
= −Γijk(t) xka(t)

dxj(t)

dt
. (7.29)

The local solution of this system with given initial condition (say, xia(0) = x̄ia) is the desired curve in

F (B), representing the parallel transport of the initial frame along the given curve.

Let now v̄ be a vector in Txi(0)B, that is, a vector at the initial “time” t = 0. We say that the curve

v = v(t) in TB is the parallel transport of v̄ if it projects on γ, with v(0) = v̄, and if the components

of v(t) in a parallel-transported frame along γ are constant6. For this definition to make sense, we must

make sure that the constancy of the components is independent of the particular initial frame chosen.

This, however, is a direct consequence of the fact that our linear connection is, by definition, consistent

with the right action of the group.

To obtain the system of ODEs corresponding to the parallel transport of v̄ along γ, we enforce the

constancy conditions:

vi(t) x−ai (t) = Ca, (7.30)

where each Ca (a = 1, ...,m) is a constant and where vi denotes components in the coordinate basis.

Differentiating this equation with respect to t and invoking Equation (7.29), we obtain:

dvi

dt
+ Γijk

dxj

dt
vk = 0. (7.31)

A vector field along γ satisfying this equation is said to be covariantly constant or parallel along γ. For

a given vector field w on B, the expression on the left-hand side makes sense in a point-wise manner

whenever a vector u is defined at a point (whereby the curve γ can be seen as a representative at t = 0).

The expression:

∇uw :=

(
dwi

dt
+ Γijk u

j wk
)

∂

∂xi
, (7.32)

is called the covariant derivative of v in the direction of u. From the treatment above, it can be seen

that the covariant derivative is precisely the limit:

∇uw = lim
t→0

ρt,0w −w(0)

t
, (7.33)

where ρ(a, b) denotes the parallel transport along γ from t = b to t = a.

3.7.12 Geodesics

A (parametrized) curve γ in a manifold B with a linear connection Γ is a geodesic if its tangent vector

field γ′ is covariantly constant along γ. In coordinates, a curve xi = xi(t) is a geodesic if, in accordance

with Equation (7.31), it satisfies the following system of second-order ODEs:

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0. (7.34)

6The same criterion for parallel transport that we are using for the tangent bundle can be used for any associated bundle.
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3.7.13 Curvature and torsion

To obtain an explicit equation for the curvature form Ω, we should start by elucidating the connection

form ω on the basis of the connection symbols Γ. Given a vector X ∈ TpFB, we know that its horizontal

component h(X) is given by:

h(X) = Γ(π(p), p) ◦ π∗ (X). (7.35)

Its vertical component must, therefore, be given by:

v(X) = X− h(X) = X− Γ(π(p), p) ◦ π∗ (X). (7.36)

Recall that the connection form ω assigns to X the vector in g such that v(X) belongs to its fundamental

vector field. Let the coordinates of p be (xi, xia). The right action of GL(m;R is given by:

(Rg(p))
i
a = xib g

b
a, (7.37)

where we have shown only the action on the fibre component and where gba is the matrix corresponding

to g ∈ GL(m;R). Consequently, if g(t) is a one-parameter subgroup represented by the vector:

ĝab =
dgab (t)

dt

∣∣∣∣
t=0

, (7.38)

the value of the corresponding fundamental vector field at p is:

g̃ia = xib ĝ
b
a. (7.39)

The coordinate expression of Equation (7.36) is:

(v(X))
i
a = Xi

a − h(X) = X− Γ(π(p), p) ◦ π∗ (X). (7.40)

Let the main part of the vector X be given by:

X = vi
∂

∂xi
+Xi

a

∂

∂xia
. (7.41)

Then, Equation (7.40) delivers:

(v(X))
i
a = Xi

a + Γjik v
i xka. (7.42)

According to Equation (7.39), the corresponding element of the Lie algebra is:

ĝba =
(
Xj
a + Γjik v

i xka

)
x−bj . (7.43)

Accordingly, the Lie-algebra valued connection form ω is given by:

ωba = Γjik x
k
a x
−b
j dxi + x−bj dxja. (7.44)

The exterior derivative is given by:

dωba =
∂Γjik
∂xm

xka x
−b
j dxm ∧ dxi

(7.45)

+ Γjikx
−b
j dxka ∧ dxi − Γjikx

k
ax
−b
s x−cj dxsc ∧ dxi − x−cj x−bs dxsc ∧ dxja.
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A vector such as (7.41) has the following horizontal component:

h(X) = vi
∂

∂xi
− Γjikx

k
av
i ∂

∂xja
. (7.46)

With a similar notation, the horizontal component of another vector Y is given by:

h(Y) = wi
∂

∂xi
− Γjikx

k
aw

i ∂

∂xja
. (7.47)

Consider now the following evaluations:

〈dxj ∧ dxi | h(X) ∧ h(Y)〉 = vjwi − viwj , (7.48)

〈dxka ∧ dxi | h(X) ∧ h(Y)〉 = −Γkrsx
s
a (vrwi − viwr), (7.49)

and

〈dxjc ∧ dxsa | h(X) ∧ h(Y)〉 = −Γjrnx
n
c Γsikx

k
a (vrwi − viwr). (7.50)

Putting all these results together, we obtain:

〈Ω | X ∧Y〉 = 〈ω | h(X) ∧ h(Y)〉 = xkax
−b
j Rjkriv

rwi, (7.51)

where

Rjkri =
Γjik
∂xr
−

Γjrk
∂xi

+ ΓjrhΓhik − ΓjihΓhrk (7.52)

is called the curvature tensor of the linear connection.

In analogy with the concept of curvature form, we define the torsion form of a connection as:

Θ = Dθ. (7.53)

Notice that the coupling with the connection is in the fact that the operator D is the exterior covariant

derivative, which involves the horizontal projection. To understand the meaning of the torsion, consider

a case in which the curvature vanishes. This means that there exists a distant (or curve independent)

parallelism in the manifold B. Thus, fixing a basis of the tangent space at any one point x0 ∈ B, a field

of bases is uniquely determined at all other points. The question that the torsion tensor addresses is

the following: does there exist a coordinate system such that these bases coincide at each point with its

natural basis? An interesting example can be constructed in R3
as follows. Starting from the standard

coordinate system, move up the x3 axis and, while so doing, apply a linearly increasing rotation to the

horizontal planes, imitating the action of a corkscrew. Thus, we obtain a system of (orthonormal) bases

which are perfectly Cartesian plane by horizontal plane, but twisted with respect to each other as we

ascend. These frames can be used to define a distant parallelism (two vectors are parallel if they have

the same components in the local frame). It is not difficult to show (or to see intuitively) that there is no

coordinate system that has these as natural bases (use, for example, Frobenius’ theorem). This example

explains the terminology of “torsion”.

To obtain the coordinate expression of the torsion form, we start by calculating the exterior derivative of

Equation (7.24) as:

dθa = dx−ai ∧ dxi = −x−aj x−bi dxjb ∧ dxi. (7.54)

Using Equation (7.49), we obtain:

〈Dθ | X ∧Y〉 = 〈dθ | h(X) ∧ h(Y)〉 = x−aj T jri v
rwi, (7.55)

where

T jri := Γjri − Γjir (7.56)

are the components of the torsion tensor of the connection.
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3.8 Riemannian manifolds

3.8.1 Inner-product spaces

We have come a long way without the need to speak about metric concepts, such as the length of a vector

or the angle between two vectors. That even the concept of power of a force can be introduced without

any metric background may have seemed somewhat surprising, particularly to those accustomed to hear

about “the magnitude of the force multiplied by the magnitude of the velocity and by the cosine of the

angle they form”. It is very often the case in applications to particular fields (Mechanics, Theoretical

Physics, Chemistry, Engineering, and so on) that there is much more structure to go around than really

needed to formulate the basic concepts. For the particular application at hand, there is nothing wrong

in taking advantage of this extra structure. Quite to the contrary: the extra structure may be the

carrier of implicit assumptions that permit, consciously or not, the formulation of the physical laws. The

most dramatic example is perhaps the adherence to Euclidean Geometry as the backbone of Newtonian

Physics. On the other hand, the elucidation of the minimal (or nearly so) structure necessary for the

formulation of a fundamental notion, has proven time and again to be the beginning of an enlightenment

that can lead to further developments and, no less importantly, to a better insight into the old results.

We have seen how the concept of the space dual to a given vector space arises naturally from the

consideration of linear functions on the original vector space. On the other hand, we have learned that,

intimately related as they are, there is no natural isomorphism between these two spaces. In other words,

there is no natural way to associate a covector to a given vector, and viceversa. In Newtonian Mechanics,

however, the assumption of a Euclidean metric, whereby the theorem of Pythagoras holds globally,

provides such identification. In Lagrangian Mechanics, it is the kinetic energy of the system that can be

shown to provide such extra structure, at least locally. In General Relativity, this extra structure (but

of a somewhat different nature) becomes the main physical quantity to be found by solving Einstein’s

equations. In all these cases, the identification of vectors with covectors is achieved by means of the

introduction of a new operation called an inner product (or a dot product or, less felicitously, a scalar

product).

A vector space V is said to be an inner-product space if it is endowed with an operation (called an inner

product):

· : V × V −→ R
(u,v) 7→ u · v, (8.1)

satisfying the following properties7:

(1) Commutativity:

u · v = v · u, ∀ u,v ∈ V ; (8.2)

(2) Bi-linearity:8

(αu1 + βu2) · v = α(u1 · v) + β(u2 · v), ∀ α, β ∈ R, u1,u2,v ∈ V ; (8.3)

7It is to be noted that in the case of a complex vector space, such as in Quantum Mechanics applications, these properties

need to be altered somewhat.
8The term bi-linearity refers to the fact that the inner product is linear in each of its two arguments. Nevertheless, given

that we have already assumed commutativity, we need only to show linearity with respect to one of the arguments.



70 CHAPTER 3. DIFFERENTIAL CONSTRUCTS

(3) Positive definiteness:9

v 6= 0 =⇒ v · v > 0. (8.4)

One can show that 0 · v = 0, for all v. The magnitude or length of a vector v is defined as the non-negative

number
√

v · v. Two vectors u,v ∈ V are called orthogonal (or perpendicular) to each other if u · v = 0.

We want now to show how the existence of an inner product induces an isomorphism between a space and

its dual (always in the finite-dimensional case). Let v ∈ V be a fixed element of V . By the linearity of

the inner product, the product v · u is linear in the second argument. Accordingly, we define the covector

ωv ∈ V ∗ corresponding to the vector v ∈ V , by:

〈ωv,u〉 := v · u, ∀ u ∈ V. (8.5)

It is not difficult to prove that this linear map from V to V ∗ is one-to-one and that, therefore, it constitutes

an isomorphism between V and V ∗. We conclude that in an inner product space there is no need to

distinguish notation-wise between vectors and covectors.

We call reciprocal basis the basis of V that corresponds to the dual basis in the isomorphism induced by

the inner product. We already know that the dual basis operates on vectors in the following way:

〈ei,v〉 = vi, ∀v ∈ V, (8.6)

where vi is the i-th component of v ∈ V in the basis {ej} (j = 1, ...n). The reciprocal basis, therefore,

consists of vectors {ej} (j = 1, ...n) such that:

ei · v = vi, ∀v ∈ V. (8.7)

Let the components of the reciprocal base vectors be expressed as:

ei = gijej . (8.8)

In other words, we denote by gij the j-th component of the i-th member of the reciprocal basis we are

seeking. It follows from (8.7) that:

ei · v = (gijej) · (vkek) = gij (ej · ek) vk = vi, ∀vk ∈ R. (8.9)

Looking at the very last equality, it follows that

gij (ej · ek) = δik. (8.10)

Indeed, regarded as a matrix equation, (8.9) establishes that the matrix with entries [gij (ej · ek)]

(summation convention understood), when multiplied by an arbitrary column-vector, leaves it unchanged.

It follows that this matrix must be the identity. This is only possible if the matrix with entries:

gij = ei · ej , (8.11)

is the inverse of the matrix with entries gij . So, the procedure to find the reciprocal basis is the following:

(i) Construct the (symmetric) square matrix with entries gij = ei · ej ; (ii) Invert this matrix to obtain

the matrix with entries gij ; (iii) Define ei = gijej . Note that the metric matrix {gij} is always invertible,

as it follows from the linear independence of the basis.

9In Relativity this property is removed.
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A basis of an inner-product space is called orthonormal if all its members are of unit length and mutually

orthogonal. The reciprocal of an orthonormal basis coincides with the original basis.

Having identified an inner-product space with its dual, and having brought back the dual basis to the

original space under the guise of the reciprocal basis, we have at our disposal contravariant and covariant

components of vectors. Recall that before the introduction of an inner product, the choice of a basis in

V condemned vectors to have contravariant components only, while the components of covectors were

covariant.

Starting from v = viei = vie
i and using Equations (8.10, 8.11), the following formulas can be derived:

vi = gijvj , (8.12)

vi = gijv
j , (8.13)

ei = gije
j , (8.14)

vi = v · ei, (8.15)

vi = v · ei, (8.16)

ei · ej = gij , (8.17)

ei · ej = δij . (8.18)

A linear map Q : U → V between inner-product spaces is called orthogonal if QQT = idV and QTQ = idU ,

where id stands for the identity map in the subscript space. The components of an orthogonal linear

map in orthonormal bases of both spaces comprise an orthogonal matrix. A linear map T between inner-

product spaces preserves the inner product if, and only if, it is an orthogonal map. By preservation of

inner product we mean that: T (u) ·T(v) = u · v, ∀u,v ∈ U.

3.8.2 Riemannian manifolds

If each tangent space TxM of the manifold M is endowed with an inner product, and if this inner

product depends smoothly on x ∈ M, we say that M is a Riemannian manifold. To clarify the concept

of smoothness, let {U , φ} be a chart in M with coordinates x1, ..., xn. This chart induces the (smooth)

basis field ∂
∂x1 , ...,

∂
∂xn . We define the contravariant components of the metric tensor g associated with

the given inner product (indicated by ·) as:

gij :=

(
∂

∂xi

)
·
(

∂

∂xj

)
. (8.19)

Smoothness means that these components are smooth functions of the coordinates within the patch. The

metric tensor itself is given by:

g = gij dx
i ⊗ dxj . (8.20)

We have learned how an inner product defines an isomorphism between a vector space and its dual.

When translated to Riemannian manifolds, this result means that the tangent and cotangent bundles are

naturally isomorphic (via the point-wise isomorphisms of the tangent and cotangent spaces induced by

the inner product).

A non-trivial physical example is found in Lagrangian Mechanics, where the kinetic energy (assumed to

be a positive-definite quadratic form in the generalized velocities) is used to view the configuration space

Q as a Riemannian manifold.
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3.8.3 Riemannian connections

The theory of Riemannian manifolds is very rich in results. Classical differential geometry was almost

exclusively devoted to their study and, more particularly, to the study of two-dimensional surfaces em-

bedded in R3
, where the Riemannian structure is derived from the Euclidean structure of the surrounding

space.

A Riemannian connection is a linear connection on a Riemannian manifold. The most important basic

result for Riemannian connections is contained in the following theorem:

Theorem 3.8.1 On a Riemannian manifold there exists a unique linear connection (called the Levi-

Civita connection) with vanishing torsion and such that the covariant derivative of the metric vanishes

identically.

We omit the proof. The curvature tensor associated with this special connection is called the Riemann-

Christoffel curvature tensor. A Riemannian manifold is said to be locally flat if, for each point, a coordinate

chart can be found such that the metric tensor components everywhere in the chart reduce to the identity

matrix. It can be shown that local flatness is equivalent to the identical vanishing of the Riemann-

Christoffel curvature tensor.

It can be shown that the Christoffel symbols of the Levi-Civita connection are given by:

Γkij =
1

2
gkh

(
∂gih
∂xj

+
∂gjh
∂xi

− ∂gij
∂xh

)
. (8.21)

3.8.4 Geodesics in a Riemannian manifold

A geodesic in a Riemannian manifold satisfies Equation (7.34), namely:

d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0, (8.22)

where Γijk = Γikj are the Christoffel symbols of the unique Levi-Civita connection associated with the

metric g. We note that, since the Levi-Civita connection is compatible with the metric, upon parallel

transport the length of vectors is conserved. In particular, for a geodesic,

gij
dxi

dt

dxj

dt
= constant. (8.23)

This means that the parameter of a geodesic curve is necessarily proportional to its running length and,

therefore, it can be identified with it.

Consider now the variational problem associated with the extreme values of the length functional:

L[γ] =

b∫
a

√
gij
dxi

dt

dxj

dt
, (8.24)

for a curve γ with equation xi = xi(t). The Euler-Lagrange equation associated with this variational

problem is precisely the geodesic equation (8.22), as can be verified directly. In other words, a geodesic

in a Riemannian manifold is an extremal of the length functional.
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Physical illustrations

4.1 Mechanics in the configuration space

4.1.1 Virtual displacements and velocity vectors

Let us return to the example of the double pendulum considered in Section 2.1. Given a configuration

q ∈ Q, we consider a small perturbation to arrive at another, neighbouring, configuration, always moving

over the surface of the torus Q (since the system cannot escape the trap of its own configuration space).

Intuitively, what we have is a small piece of a curve in Q, which we can identify with tangent vector.

To make this notion more precise, imagine that we have an initially un-stretched thin elastic ruler on

which equally spaced markers have been drawn, including a zero mark. If we now stretch or contract

this ruler, bend it and then apply it to the surface of the torus at some point q, in such a way that the

zero mark falls on q, we obtain an intuitive representation of a parametrized curve γ on the configuration

manifold. Let us now repeat this procedure ad infinitum with all possible amounts of bending and

stretching, always applying the deformed ruler with its zero mark at the same point q. Among all the

possible curves obtained in this way, there will be a sub-collection that shares the same tangent and

the same stretch with γ. We call this whole collection (technically known as an equivalence class of

parametrized curves) a tangent vector to the configuration manifold at q. Notice that, although when we

draw this tangent vector v in the conventional way as an arrow, it seems to contradict the fact that we

are supposed to stay on the surface, the definition as an equivalence class of curves (or, less precisely, a

small piece of a curve) removes this apparent contradiction. Any of the curves in the equivalence (e.g.,

the curve γ of departure) can be used as the representative of the vector. The vector can also be regarded

as a derivation with respect to the curve parameter (the equally spaced markers).

The collection of all tangent vectors at a point q ∈ Q is called the tangent space of Q at q and is denoted

by TqQ. In the case of the torus, the interpretation of TqQ is the tangent plane to the torus at q, as

shown in Figure 4.1. The tangent space at a point q of the configuration space is the carrier of all the

possible virtual displacements away from the configuration represented by q. A physically appealing way

to look at virtual displacements is as virtual velocities multiplied by a small time increment.

73
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Figure 4.1: A tangent space

4.1.2 Force fields

A force αq at a point q ∈ Q is a linear functional on the space of virtual displacements at q. This

definition corresponds exactly to Lagrange’s idea of a generalized force as an entity that produces virtual

work on virtual displacements. Geometrically, a force is nothing but a covector at q, that is, αq ∈ T ∗qQ.

A force field α is, accordingly, a one-form on Q, namely, a section of T ∗Q.

A force field α is said to be conservative or to derive from a potential if α is exact. That is, a force field

is conservative if there exists a scalar function V : Q → R such that

α = −dV. (1.1)

4.1.3 The Lagrangian density

In Lagrange’s view of Mechanics, a mechanical system is characterized by a single scalar function defined

on the configuration space of the system. This function L : T Q → R is called the Lagrange density

function of the system. It encompasses both the force fields acting on the system and its inertia properties.

In many cases of practical application, the Lagrangian density function can be decomposed into two parts,

each one corresponding to one of the properties just mentioned. Notice that any function V : Q → R can

be trivially extended to a function V : TQ → R, which we denote by the same symbol. If we encompass

the force fields in a single potential function V , the part associated with the inertia properties of the

system, denoted by T , is known as the kinetic energy density. The Lagrangian density is defined as the

difference:

L = T − V. (1.2)

For many mechanical systems of interest, the kinetic energy density T : TQ → R is a point-wise positive-

definite quadratic form in the velocities, namely (in a coordinate patch):

T =
1

2
mij

dqi

dt

dqj

dt
, (1.3)

where mij = mij(q) are components of a positive-definite symmetric matrix, known as the mass matrix

of the system. Clearly, in this frequent particular case, the configuration space acquires the structure of a

Riemannian manifold whose metric is induced by the kinetic energy density. From now on, we will refer

exclusively to these decomposable systems.
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4.1.4 Lagrange’s postulate and the equations of motion

The objective of Mechanics is to predict, out of given initial conditions q0 ∈ Q and q̇0 ∈ Tq0 at time t = 0,

the system trajectory for times t > 0 within a certain time interval. We now formulate a fundamental

postulate, which we call Lagrange’s postulate, as follows:

Postulate 4.1.1 For a decomposable mechanical system, in the absence of any force field, the system

follows a geodesic of the Levi-Civita connection induced by the kinetic-energy density.

Given any possible system trajectory, that is, given any curve γ in Q we define its generalized acceleration

field a as the covariant derivative of its velocity in the direction of the velocity, namely:

a = ∇vv. (1.4)

The above postulate, therefore, can be rephrased as: In the absence of any force field, a decomposable

system follows a trajectory of vanishing generalized acceleration.

Consider now the case of the presence of a non-vanishing force field α. According to the Newtonian

viewpoint,1 we postulate that the trajectory of the system is governed by the second-order ODE system:

τa = α, (1.5)

where we have denoted by τa the covector corresponding to the vector a in the isomorphism between

TqQ and T ∗qQ induced by the Riemannian metric. In components:

(τa)i = mija
j . (1.6)

Box 4.1.2 Double power

It is worthwhile noticing that the Riemannian structure induced by the kinetic energy density needs

to be exploited not just once but rather twice in the writing of the equations of motion. The first use

of this structure is necessary for the very definition of the acceleration vector. This would have been

feasible with only the specification of a linear connection (not necessarily Riemannian) on Q. Even in

the absence of a connection, it is always possible to lift any given trajectory γ to the tangent bundle

TQa and, thereafter, to lift once again this lifted trajectory to the iterated bundle T (TQ). Thus, a

primitive notion of acceleration would give us an element of the iterated tangent bundle. A linear

connection, on the other hand, implies a connection in the associated bundle TQ, which permits us

to calculate the vertical part of this primitive acceleration. This vertical part is tangent to a fibre of

TQ. But in a vector space there exists a natural isomorphism between the tangent spaces and the

space itself. In this way, it can be said that the primitive acceleration, originally belonging to the

iterated bundle, induces via a linear connection a vector tangent to Q itself. We have called this vector

the acceleration. The second use of the Riemannian structure is essential to establish the equation of

motion. Indeed, the force is a one-form whereas the acceleration is a vector. The existence of a metric

permits us to relate one with the other.

aBy attaching to each point of γ its tangent vector.

1For a mote thorough treatment of Newtonian Mechanics in the geometrical setting, see Segev R and Ailon A (1986),

Newtonian Mechanics of Robots, it Journal of the Franklin Institute 322/3, 173-183.
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Recalling that a geodesic in a Riemannian manifold is also an extremal of the length functional, we may

adopt the Lagrangian viewpoint and establish that the system follows a trajectory corresponding to an

extreme value of the Lagrangian functional defined as:

L[γ] =

b∫
a

Ldt. (1.7)

In the case of conservative force fields, both formulations give identical results, as can be verified directly

by writing the Euler-Lagrange equations of this variational problem.

4.2 Hamiltonian mechanics

In Lagrangian Mechanics, the fundamental geometric arena is precisely the tangent bundle TQ. Indeed,

the Lagrangian density L of a mechanical system is given by a function L : TQ → R, assigning to each

configuration and each velocity (at this configuration) a real number.

A covector Q at q is a linear function that assigns to each tangent vector (virtual displacement δq) at q

a real number δW = 〈Q, δq〉, whose meaning is the virtual work of the generalized force Q on the virtual

displacement δq (or the power of the generalized force on the corresponding velocity). The terminology

and the notation are due to Lagrange. The interesting feature of the geometric approach is that, once

the basic geometric entity has been physically identified as a manifold, its tangent and cotangent bundles

are automatically the carriers of physical meaning. In Hamiltonian Mechanics, covectors at q ∈ Q can be

regarded as generalized momenta of the system. Thus, the cotangent bundle T ∗Q is identified with the

phase space of the system, namely, the repository of all configurations and momenta. The Hamiltonian

function of a mechanical system is a function H : T ∗Q → R. The cotangent bundle of a manifold is

endowed with a canonical symplectic structure, which we now discuss briefly.

4.2.1 Symplectic vector spaces

A tensor T of type (0, r) on V is a multilinear function acting on r vector arguments, (v1, ...,vr). Fixing

one argument, say v1, we obtain a tensor Tv1
of type (0, r − 1). In particular, a tensor T of type (0, 2)

assigns to each vector u ∈ V the covector Tu defined by:

Tu(v) = T (u,v) ∀v ∈ V. (2.1)

The tensor T of type (0, 2) is non-degenerate if Tu = 0 implies that u = 0. Since in a given basis the

components of the covector Tu are Tiju
i, we conclude that a necessary and sufficient condition for T to be

nondegenerate is that the matrix with entries [Tij ] must have a non-vanishing determinant, a condition

that is independent of the basis chosen.

A symplectic vector space is a vector space in which a non-degenerate 2-covector ω has been singled

out. The standard example is provided by a vector space of even dimension 2m. Choosing a basis

{e1, ..., em, f1, ..., fm}, the 2-covector

ωef =

m∑
i=1

ei ∧ f i (2.2)

is nondegenerate. It can be shown that every symplectic vector space is necessarily even-dimensional and

that there exists a basis for which ω has the form (2.2).
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An important property of a symplectic vector space is that, due to the nondegeneracy of the 2-covector

ω, there exists a natural correspondence between vectors and covectors.

4.2.2 Symplectic manifolds

Recall that an r-form ω on a manifold M is a smooth r-covector field, namely, a smooth assignment of

an r-covector ωp at each point p ∈ M. Equivalently, ω is a (smooth) section of the bundle Λr(M). A

symplectic form on M is a nondegenerate closed 2-form ω. A symplectic manifold (M, ω) is a manifold

in which a symplectic form ω has been singled out. According to our discussion above, a symplectic

manifold is necessarily even-dimensional.

Given an m-dimensional manifold Q (for example, the configuration space of a mechanical system), the

tangent and cotangent bundles are manifolds of even dimension 2m. It is a remarkable fact that the

cotangent bundle T ∗Q of any manifold is automatically endowed with a canonical symplectic form. By

’canonical’ we mean that this form is defined intrinsically (i.e., independently of any coordinate chart). It

is not surprising, therefore, that this canonical structure results in a corresponding physical interpretation.

For a mechanical system, the cotangent bundle represents the phase space (of positions and momenta)

and the canonical form plays a fundamental role in Hamiltonian mechanics.

A generic point s ∈ T ∗Q has the form s = (q, p), where q = π(s) ∈ Q and p ∈ T ∗qQ. Put differently,

a point in the cotangent bundle consists of a point q in the base manifold and a 1-covector p at q.

Let V be a tangent vector to T ∗Q at the point s = (q, p) ∈ T ∗Q, namely, V ∈ T (T ∗Q). Since the

projection π : T ∗Q → Q is a differentiable map, its differential π∗ : T (T ∗Q) → TQ is well-defined. In

particular, π∗(Vs) ∈ TqQ. But the tangent bundle T (T ∗Q), as a tangent bundle, has its own projection

τ̂ : T (T ∗Q) → T ∗Q. In particular, τ̂(Vs) = s = (q, p). Since this is a covector at q ∈ Q, it makes sense

to evaluate it on the tangent vector π∗(Vs) ∈ TqQ.

Recall that a 1-form on T ∗Q is a smooth assignment of a covector θs at each point s = (q, p) ∈ T ∗Q. We

define the canonical 1-form θ on T ∗Q by the formula:

θ(Vs) = 〈τ̂(Vs), π∗(Vs)〉. (2.3)

The canonical symplectic form ω on T ∗Q is defined as:

ω = −dθ. (2.4)

Thus, ω is exact and, therefore, closed. Moreover, it is nondegenerate. It is, in fact, not difficult to

obtain a coordinate expression of the canonical symplectic form. We have seen that a chart (q1, ..., qm)

in Q induces a chart in T ∗Q. Indeed, any 1-form p on Q has the coordinate expression p = pidq
i, where

the summation convention is in force. The induced chart in T ∗Q uses as coordinates the 2m numbers

(q1, ..., qm, p1, ..., pm). The canonical 1-form θ is given by θ = pidq
i. It follows that the canonical

symplectic form is expressed as: ω = −dpi ∧ dqi = dqi ∧ dpi.

4.2.3 Hamiltonian systems

A Hamiltonian system consists of a symplectic manifold (M, ω) and a smooth real-valued function H :

M → R called the system Hamiltonian. In Classical Mechanics, the symplectic manifold is identified

with the phase space M = T ∗Q of the underlying configuration manifold Q.
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A key concept in Hamiltonian systems is that of Hamiltonian vector field. Since the Hamiltonian H is

differentiable, its differential dH is a well-defined 1-form on M. In a symplectic manifold, on the other

hand, to each 1-form we can assign uniquely a vector field, by exploiting the point-wise nondegeneracy

of the symplectic form. We thus obtain the associated Hamiltonian vector field VH . More explicity, at

each point s ∈M we have:

〈dH,U〉 = ω(VH ,U) ∀U ∈ TsM. (2.5)

A curve γ in M is a trajectory of the Hamiltonian system if it satisfies Hamilton’s equations, namely, if

it is an integral curve of the Hamiltonian vector field, viz.:

dγ

dt
= VH(γ(t)). (2.6)

In the natural coordinates of a cotangent bundle, the curve γ consists of the 2m functions qi = qi(t) and

pi = pi(t), with i = 1, ...,m. The Hamiltonian vector field has the components ∂H/∂pi and −∂H/∂qi.
We thus recover the standard form of Hamilton’s equations:

dqi

dt
=
∂H

∂pi
, (2.7)

and
dpi
dt

= −∂H
∂qi

, (2.8)

Notice that the construction (2.5) applies to any smooth real-valued function defined onM, not just the

Hamiltonian. Namely, to any such function G we can uniquely assign a vector field VG. We can thus

define an operation between any two scalar fields G and K, called the Poisson bracket {G,K}, by any of

the equivalent prescriptions:

{G,K} = VK(G) = 〈dG,VK〉 = ω(VG,VK). (2.9)

The derivative of a scalar function G along a trajectory γ of the Hamiltonian system (M,H) is obtained

as:
dG
dt

=
dγ

dt
(G) = 〈dG, dγ

dt
〉 = 〈dG,VH〉 = {G,H}. (2.10)

Thus, the Poisson bracket of a function G (representing some physical property of the system) with the

Hamiltonian function describes the time evolution of G. The vanishing of this Poisson bracket indicates,

therefore, a conserved quantity.

4.3 Fluxes in Continuum Physics

One of the basic notions of Continuum Physics is that of an extensive property, a term that describes

a property that may be assigned to subsets of a given universe, such as the mass of various parts of a

material body, the electrical charge enclosed in a certain region of space, and so on. Mathematically

speaking, therefore, an extensive property is expressed as a real-valued set function p, whose argument

ranges over subsets R of a universe U . It is usually assumed, on physical grounds, that the function p is

additive, namely,

p(R1 ∪R2) = p(R1) + p(R2) whenever R1 ∩R2 = ∅. (3.1)

With proper regularity assumptions, additivity means that, from the mathematical standpoint, p is a

measure in U .
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In the appropriate space-time context, the balance of an extensive property expresses a relation between

the rate of change of the property in a given region and the causes responsible for that change. Of

particular importance is the idea of flux of the property through the boundary of a region, which is an

expression of the rate of change of the property as a result of interaction with other regions. It is a common

assumption that the flux between regions takes place through, and only through, common boundaries.

In principle, the flux is a set function on the boundaries of regions. In most physical theories, however,

this complicated dependence can be greatly simplified by means of the so-called Cauchy postulates and

Cauchy’s theorem.

4.3.1 Extensive-property densities

We will identify the universe U as an m-dimensional differentiable manifold. Under appropriate continuity

assumptions, a set function such as the extensive property p is characterized by a density . Physically, this

means that the property at hand cannot be concentrated on subsets of dimension lower than m. More

specifically, we assume that the density ρ of the extensive property p is a smooth m-form on U such that

p(R) =

∫
R

ρ, (3.2)

for any subset R ⊂ U for which the integral is defined. Clearly, the additivity condition (3.1) is satisfied

automatically.

We introduce the time variable t as if space-time were just a product manifold R × U . In fact, this

trivialization is observer-dependent, but it will serve for our present purposes. The density ρ of the

extensive property p should, accordingly, be conceived as a function ρ = ρ(t, x), where x ∈ U . Notice

that, since for fixed x and variable t, ρ belongs to the same vector space Λm (T ∗xU), it makes sense to

take the partial derivative with respect to t to obtain the new m-form

β =
∂ρ

∂t
, (3.3)

defined on U . For a fixed (i.e., time-independent) region R, we may write

dp(R)

dt
=

∫
R

β. (3.4)

In other words, the integral of the m-form β over a fixed region measures the rate of change of the content

of the property p inside that region.

4.3.2 Balance laws, flux densities and sources

In the classical setting of Continuum Mechanics it is assumed that the change of the content of a smooth

extensive property p within a fixed region R can be attributed to just two causes: (1) the rate at which

the property is produced (or destroyed) within R by the presence of sources and sinks, and (2) the rate

at which the property enters or leaves R through its boundaries, namely the flux of p. For the sake

of definiteness, in this section we adopt the convention that the production rate is positive for sources

(rather than sinks) and that the flux is positive when there is a an outflow (rather than an inflow) of

the property. The balance equation for the extensive property p states that the rate of change of p in a

fixed region R equals the difference between the production rate and the flux. A good physical example is
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the balance of internal energy in a rigid body due to volumetric heat sources and heat flux through the

boundaries.

Since we have assumed continuity for p as a set function, we will do the same for both the production

and the flux. As a result, we postulate the existence of an m-form s, called the source density such that

the production rate in a region R is given by the integral∫
R

s. (3.5)

Just as ρ itself, the m-form s is defined over all of U and is independent of R. Thus, from the physical

point of view, we are assuming that the phenomena at hand can be described locally. This assumption

excludes interesting phenomena, such as internal actions at a distance or surface-tension effects.

As far as the flux term is concerned, we also assume that it is a continuous function of subsets of the

boundary ∂R. We postulate the existence, for each region R, of a smooth (m − 1)-form τR, called the

flux density, such that the flux of p is given by ∫
∂R

τR. (3.6)

Thus, the classical balance law of the property p assumes the form∫
R

β =

∫
R

s−
∫
∂R

τR. (3.7)

An equation of balance is said to be a conservation law if both s and τR vanish identically.

4.3.3 Flux forms and Cauchy’s formula

We note that (beyond the obvious fact that β and s are m-forms, whereas τR is an (m− 1)-form), there

is an essential complication peculiar to the flux densities τR. Indeed, in order to specify the flux for the

various regions of interest, it seems that one has to specify the form τR for each and every region R. In

other words, while the rate of change of the property and the production term are specified by forms

whose domain (for each time t) is the entire space U , the flux term must be specified by means of a set

function, whose domain is the collection of all regions. We refer to the set function R 7→ τR as a system

of flux densities. Consider, for example, a point x ∈ U belonging simultaneously to the boundaries of

two different regions. Clearly, we do not expect that the flux density will be the same for both. The

example of sun-tanning should be sufficiently convincing in this regard. Consider, however, the following

particular case. Let the natural inclusion map

ι : ∂R −→ U , (3.8)

be defined by

ι(x) = x ∀x ∈ ∂R. (3.9)

Notice that this formula makes sense, since ∂R ⊂ U . Moreover, the map ι is smooth. It can, therefore,

be used to pull back forms of any order on U to forms of the same order on ∂R. In particular, we can

define ∫
∂R

φ =

∫
∂R

ι∗(φ), (3.10)
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for any form φ on U . Let us now assume the existence of a globally defined (m − 1)-flux form Φ on U
and let us define the associated system of flux densities by means of the formula

τR = ι∗∂R(Φ), (3.11)

where we use the subscript ∂R to emphasize the fact that each region requires its own inclusion map.

Equation (3.11) is known as Cauchy’s formula. Clearly, this is a very special system of flux densities (just

as a conservative force field is a special vector field derivable from a single scalar field). Nevertheless, it is

one of the fundamental results of classical Continuum Mechanics that, under rather general assumptions

(known as Cauchy’s postulates), every system of flux densities can be shown to derive from a unique

flux form using Cauchy’s formula (3.11). We will omit the general proof of this fact, known as Cauchy’s

theorem.

In less technical terms, Cauchy’s formula is the direct result of assuming that the flux is given by a single

2-form defined over the three-dimensional domain of the body. The fact that one and the same form is

to be used for a given location, and integrated over the given boundary, is trivially seen to imply (and

generalize) the linear dependence of the flux on the normal to the boundary, as described in the standard

treatments.

4.3.4 Differential expression of the balance law

Assuming the existence of a flux form Φ, the general balance law (3.7) can be written as∫
R

β =

∫
R

s−
∫
∂R

ι∗∂R(Φ). (3.12)

Using Stokes’ theorem (Equation (5.11)), we can rewrite the last term as∫
∂R

ι∗∂R(Φ) =

∫
R

dΦ, (3.13)

where the dependence on ∂R has evaporated. Using this result, we write (3.12) as∫
R

β =

∫
R

s−
∫
R

dΦ. (3.14)

Since this balance law should be valid for arbitrary R, and since the forms β, s and Φ are defined globally

and independently of the region of integration, we obtain

β = s− dΦ. (3.15)

This equation is known as the differential expression of the general balance law.

4.4 Microstructure

The idea of endowing bodies with a microstructure represented by affine deformations of micromedia, or

grains, embedded in a matrix goes back to the pioneering work of the Cosserat brothers. If each of the

grains is permitted to undergo just affine deformations (namely, deformations with a constant gradient),
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it is clear that the extra kinematics can be described in terms of a linear mapping of any basis attached

to the grain. Knowing how one basis deforms is enough to determine how all other bases at the same

point deform. The choice of basis remaining arbitrary, we are naturally led to the conclusion that the

appropriate geometric counterpart of a body B with linear microstructure (a general Cosserat body2) is

the bundle of linear frames FB.

4.5 Kinematics of a Cosserat body

A Cosserat body is, by definition, the frame bundle FB of an ordinary body B, usually called the

macromedium, the matrix or the underlying body. We recall that the frame bundle of a differentiable

manifold consists roughly of the collection of all frames at each point of the manifold. Thus, in the case

of a three-dimensional manifold B, we obtain the collection of all triads of linearly independent vectors

forming all possible bases of the tangent spaces of B. Since each triad is attached to a particular point

of B, we have a projection map:

π : FB −→ B, (5.1)

which assigns to each triad the point at which it is attached. In the terminology of differential geometry,

the macromedium B is known as the base manifold of the frame bundle. Given a point X ∈ B, the inverse

image π−1(X) is called the fibre at X. It consists of all the possible bases of the tangent space TXB. In

the physical picture, the fibre is the carrier of the information about the events taking place at the“grain”

level. Since, as conceived by the Cosserats, any particular basis (rather that the whole collection thereof)

should carry that very information, we will take this fact into consideration when defining the concept of

configuration and deformation of a Cosserat body.

Assume now that a coordinate chart with coordinates XI (I = 1, 2, 3) is specified on an open set U of

the base manifold B. The natural basis of this chart:

EI =
∂

∂XI
, I = 1, 2, 3, (5.2)

determines, at each point of U ⊂ B, a basis of the tangent space. In other words, the coordinate chart

induces a smooth local section of the frame bundle. Any frame HI (I = 1, 2, 3) within the domain U can

be expressed in terms of components in the coordinate-induced frame by means of a matrix, viz.:

HI = HJ
IEJ . (5.3)

We can say, therefore, that, as far as the domain of the chart is concerned, every element of FB can

be represented uniquely by the twelve numbers (XI , HK
J ). In fact one can prove that the frame bundle

FB is itself a differentiable manifold of dimension 12 and that the numbers just described constitute

admissible coordinates of this manifold. If we should consider a different coordinate system, Y I say, on

an open set V ⊂ B such that U ∩ V 6= ∅, the natural bases of both systems can be related point-wise

by an arbitrary non-singular 3 × 3-matrix, that is, by an arbitrary member of the general linear group

GL(3,R). This means that fibre-wise the coordinate transformations are governed by this group, which

is, therefore, called the structural group of the bundle FB. On the other hand, for a fixed basis at a

point, all the elements in the fibre, according to Equation (5.3), are precisely spanned by the collection

2The terminology Cosserat medium is often used in the literature to designate the particular case in which the grains

can undergo rotations only. For this reason, we use here the longer and more descriptive title. An alternative terminology

distinguishes between micropolar and micromorphic media.
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of non-singular 3 × 3-matrices. This special situation, whereby the nature of the fibres and the nature

of the structural group are identical, is described in differential geometry by saying that the bundle of

frames of a manifold is a principal bundle.

We have demonstrated the manifold character of the frame bundle by means of fibre-wise coordinates

which consist of components of the frames in terms of the natural basis of a coordinate system of the

base manifold. It should be clear, however, that we could as well have singled out at each point any basis

of the tangent space of the base manifold, not necessarily a coordinate basis, and expressed the fibre-wise

coordinates in terms of the matrix of components of the frames in that particular basis.

In a principal bundle we have at our disposal a special operation called the right action of the structural

group on the principal bundle. We will describe this operation for the particular case at hand. Let M

belong to our structural group. M is, therefore, a nonsingular matrix with entries {M I
J}. We want to

define the right action RM of M as it applies to each element of the principal bundle FB to produce

another element of B. We will do this as follows: let (XI , HI
J) be the components of an element of FB in

some coordinate system. Then the image of this element by the right action of M is given, by definition,

as the element of FB with components (XI , HI
JM

J
K) in the same coordinate system. It is not difficult

to prove that this definition, although expressed in a particular chart, is in fact independent of the chart

chosen. Note that a frame at a point is always mapped to another frame at the same point, so that the

right action just defined is fibre preserving.

We now seek an appropriate definition of a configuration of a Cosserat body. To this end, we start

by noting that the physical space (which we have identified with R3
) is itself a differentiable manifold

and, therefore, it has a naturally defined frame bundle FR3
with projection πR. We want to define a

configuration of a Cosserat body as a map K between these two principal bundles, namely:

K : FB −→ FR3
. (5.4)

But it is clear that an arbitrary map will not do, so this concept needs further clarification. When we

map a principal bundle into another, there are three elements at play. Firstly, there are the two base

manifolds, which in our case are B and R3
. Secondly, there are the fibres at each point of these manifolds.

And finally, there are the two structural groups. We will assume that the configuration K incorporates

an ordinary configuration of the base manifold (the macromedium) B, that is, an embedding:

κ : B −→ R3
. (5.5)

This map is, as we know, smooth and has a smooth inverse defined on the image κ(B). Secondly, we

want that fibres don’t get mixed up: a frame at a point of X ∈ B must be mapped to a frame at the

image point κ(X). In the physical picture, we want each point in the matrix to carry its own “grain” in

the process of deformation. Mathematically, this means that the map K must satisfy the equation:

πR ◦K = κ ◦ π. (5.6)

This restriction is nicely represented in the following commutative diagram:

FB -K
FR3

?

πR

R3

?

π

B -
κ

(5.7)
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But we are not done yet, and this is because in a principal bundle we also have to take into consideration

the structural groups and provide an appropriate map between them. Since in our particular case the

two structural groups are identical, namely GL(3,R), we will agree that the map between them is just

the identity map. Finally, we will require that the right action of the structural group commute with the

map between fibres. This can be represented by the following commutative diagram:

FB -K
FR3

?

RM

FR3

?

RM

FB -
K

(5.8)

Physically, this means that the deformation of a grain is an intrinsic quantity independent of the particular

triad that one chooses to represent that grain. This is precisely the consistency condition that reconciles

the original Cosserat picture (one frame representing the grain at a point) with the principal bundle

picture (the collection of all frames at a point representing the same grain).

In the terminology of differential geometry, with all the above restrictions, the map between FB and

its image K(FB) ⊂ FR3
is called a principal-bundle isomorphism. In terms of components in a given

coordinate system in the body and in space, a configuration of a Cosserat body is defined by twelve

smooth functions:

xi = κi(XJ), (5.9)

and

Ki
I = Ki

I(X
J). (5.10)

We see that in a Cosserat body there exist two independent mechanisms, as it were, of dragging vectors

by means of a deformation (Figure 4.2): The first mechanism is the ordinary dragging of vectors by means

of the deformation gradient of the macromedium, represented by the matrix with entries F iI = xi,I . The

second mechanism is the one associated with the deformation of the “micromedium” or grain, and is

represented by the matrix with entries Ki
I . To recover an ordinary medium (without microstructure)

these two mechanisms are identified with each other.

We have been freely talking about configurations and deformations almost interchangeably. Indeed, since

principal-bundle morphisms can be inverted and composed, we can clearly adopt a reference configuration

of a Cosserat body and define the notion of a deformation in the same way as we have done for ordinary

bodies.

4.6 Dislocations

4.6.1 An intuitive picture

Let an atomic lattice be given by, say, all points with integer coordinates in R2
. To each atom we can

associate two vectors (in this instance unit and orthogonal) determined by joining it to its immediate

neighbours to the right and above, respectively. If the lattice is deformed regularly, these vectors will

deform accordingly, changing in length and angle, but always remaining linearly independent at each
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Figure 4.2: The two kinematically independent dragging mechanisms

atom. In the (not precisely defined) continuous limit, we can imagine that each point of R2
has been

endowed with a basis or frame, the collection of which is called a moving frame (or repère mobile)3.

Returning to the discrete picture, if there is a dislocation (for example, a half-line of atoms is missing, as

shown on the right-hand side of Figure 4.3), the local bases will be altered differently from the case of a

mere deformation. The engineering way to recognize this is the so-called Burgers’ circuit, which consists

of a four-sided path made of the same number of atomic spacings in each direction. The failure of such a

path to close is interpreted as the presence of a local dislocation in the lattice. We want to show that in

the putative continuous limit this failure is represented by the non-vanishing of a Lie bracket. What we

have in the continuous case as the only remnant of the discrete picture is a smoothly distributed collection

of bases, which we have called a moving frame, and which can be seen as two vector fields Eα (α = 1, 2)

over R2
.

6 6s s

Perfect lattice Dislocated lattice

Figure 4.3: Dislocation in a crystal lattice

From the theory of ordinary differential equations, we know that each vector field gives rise, at least

locally, to a well-defined family of parametrized integral curves, where the parameter is determined up

3This idea was introduced mathematically by Cartan and, in a physical context, by the brothers Cosserat.
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to an additive constant. More specifically, these curves are obtained as the solutions r = r(sα) of the

systems of equations:

dr(sα)

dsα
= Eα[r(sα)], (α = 1, 2; no sum on α), (6.1)

where r represents the natural position vector in R2
. The parameter sα (one for each of the two families

of curves) can be pinned down in the following way. Select a point p0 as origin and draw the (unique)

integral curve γ1 of the first family passing through this origin. Adopting the value s1 = 0 for the

parameter at the origin, the value of s1 becomes uniquely defined for all the remaining points of the

curve. Each of the curves of the second family must intersect this curve of the first family. We adopt,

therefore, for each of the curves of the second family the value s2 = 0 at the corresponding point of

intersection with that reference curve (of the first family). In this way we obtain (at least locally) a new

coordinate system s1, s2 in R2
. By construction, the second natural base vector of this coordinate system

is E2. But there is no guarantee that the first natural base vector will coincide with E1, except at the

curve γ1 through the adopted origin. In fact, if we repeat the previous construction in reverse, i.e. with

the same origin but adopting the curve γ2 of the second family as a reference, we obtain in general a

different system of coordinates, which is well adapted to the basis vectors E1, but not necessarily to E2.

γ1(s1)

γ2(s2)

1E1

M
E2

�
I

O

:

∆s1

∆s2

∆s1
∆s2

sp2 sp1

s
p0

sp̂
s
p′

E′2

Figure 4.4: The continuous case

Assume now that, starting at the adopted origin, we move an amount of ∆s1 along γ1 to arrive at a

point p′ and thereafter we climb an amount of ∆s2 along the encountered curve of the second family

through p′. We arrive at some point p1. Incidentally, this is the point with coordinates (∆s1,∆s2) in the

coordinate system obtained by the first construction. If, however, starting at the same origin we move

by ∆s2 along the curve γ2 to a point p̂ and then move by ∆s1 along the encountered curve of the first

family, we will arrive at a point p2 (whose coordinates are (∆s1,∆s2) in the second construction) which

is, in general, different from p1. Thus, we have detected the failure of a four-sided circuit to close! The

discrete picture has, therefore, its continuous counterpart in the non-commutativity of the flows along

the two families of curves.

Let us calculate a first-order approximation to the difference between p2 and p1. For this purpose, let us

evaluate, to the first order, the base vector E2 at the auxiliary point p′. The result is:

E′2 = E2(p0) +
∂E2

∂xi
dxi

ds1
∆s1, (6.2)

where derivatives are calculated at p0. The position vector of p1, always to first-order approximation, is
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obtained, therefore, as:

r1 = ∆s1E1(p0) + ∆s2
(

E2(p0) +
∂E2

∂xi
dxi

ds1
∆s1,

)
. (6.3)

In a completely analogous fashion, we calculate the position vector of p2 as:

r2 = ∆s2E2(p0) + ∆s1
(

E1(p0) +
∂E1

∂xi
dxi

ds2
∆s2,

)
. (6.4)

By virtue of (6.1), however, we have:

dxi

dsα
= Eiα, (6.5)

where Eiα is the i-th component in the natural basis of R2
of the base vector Eα. From the previous

three equations we obtain:

r2 − r1 =

(
∂E1

∂xi
Ei2 −

∂E2

∂xi
Ei1

)
∆s1∆s2 = [E1,E2] ∆s1∆s2. (6.6)

We thus confirm that the closure of the infinitesimal circuits generated by two vectors fields is tantamount

to the vanishing of their Lie bracket. This vanishing, in turn, is equivalent to the commutativity of the

flows generated by these vector fields. For this reason, the Lie bracket is also called the commutator of

the two vector fields. In physical terms, we may say that the vanishing of the Lie brackets between the

vector fields representing the limit of a lattice is an indication of the absence of dislocations.

Since in this example we have introduced the notion of a moving frame, that is, a smooth field of bases

Ei (i = 1, ..., n) over an n-dimensional manifold, it makes sense to compute all the possible Lie brackets

between the base vectors and to express them in terms of components in the local basis. Since a Lie

bracket of two vector fields is itself a vector field, there must exist unique scalar fields ckij such that:

[Ei,Ej ] = ckijEk (i, j, k = 1, ..., n). (6.7)

These scalars are known as the structure constants of the moving frame. The structure constants vanish

identically if, and only if, the frames can be seen locally as the natural base vectors of a coordinate

system.

4.6.2 Distant parallelism

An equivalent way to analyze the presence of dislocations within the previous picture consists of regarding

the moving frame associated with an underlying (perfect or defective) lattice as establishing a distant

parallelism in the body manifold B, a notion that we have already encountered. Two tangent vectors

at different points are said to be parallel if they have the same respective components in the respective

local bases. Clearly, a distant parallelism establishes a fixed isomorphism between any pair of fibres of

the frame bundle FB and, consequently, a linear connection.

To determine the Christoffel symbols of this parallelism in some coordinate system xi, we start by writing

the moving frame in terms of components as:

Eα = Eiα
∂

∂xi
. (6.8)
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According to our criterion for parallelism, it is obvious that these base vectors (having trivially constant

components upon themselves) are parallel (along any curve). Accordingly, their covariant derivatives

must vanish identically along the coordinate lines. Using Equation (7.32), we obtain:

∇ ∂

∂xh
Eα =

(
dEiα
dxh

+ Γijk δ
j
h E

k
α

)
∂

∂xi
= 0, (6.9)

for each coordinate line xh. Consequently,

Γijk = −dE
i
α

dxj
E−αk . (6.10)

The corresponding Riemann-Christoffel curvature tensor vanishes identically. The components of the

torsion tensor are proportional to the components of the Lie brackets of corresponding pairs of vectors

of the frames. Thus, the vanishing of the torsion is indicative of the absence of dislocations.

More generally, material parallelisms can be introduced in a uniform body via material isomorphisms, as

described in Section 2.5. The corresponding material connections, whether or not curvature-free, open

the door for the detection of material inhomogeneity. Locally, homogeneity is tantamount to the existence

of a torsion-free material connection.4

4.6.3 Bravais planes and differential forms

From the previous treatment it might appear that the theory of continuous distributions of dislocations is

irretrievably tied to the specification of a basis (or a collection of bases) at each point of the continuum. It

comes, therefore, as a surprise that in fact a single differential one-form is sufficient to display the physical

idea of a dislocation. A covector ω on an n-dimensional vector space V induces a family of hyperplanes.

A hyperplane can be regarded either as a subspace of dimension n − 1 in the affine space associated

with V or, equivalently, as the collection of vectors of v ∈ V such that the evaluation ω(v) is equal to a

fixed constant k. If, for example, we restrict k to be an integer, then the evaluation of the covector ω on

a vector v can be roughly regarded as the “number of hyperplanes” cut by the arrow representing the

vector. Thus, a covector can be seen as a system of parallel planes, with a given “density”, of a Bravais

lattice.

In the case of a manifold B, a one form ω is a covector field or, more precisely, a cross section of the

cotangent bundle T ∗B. According to our previous description, therefore, a one-form represents at each

point a density of parallel layers. We note that no additional structure, metric or otherwise, is required

for this interpretation. We call the one-form ω the local layering form. Assume now that the local layering

form ω is closed, namely, dω = 0 identically at the nieghbourhood of a point. Then, a (perhaps smaller)

neighbourhood exists where the form is also exact. In other owrds, there exists locally a scalar function

f : B → R where ω = df . This means that, at least locally, the hyperplanes constituting the pointwise

layering are, in fact, tangent to the hypersurfaces f = constant and also that the local densities at

neighbouring points are mutually compatible. In this case we say that the given layering form determines

a locally coherent system. If, on the other hand, ω is not closed, we define its exterior derivative δ = dω

as the dislocation density 2-form. A non-vanishing δ can indeed be interpreted as a local incoherence in

the single family of Bravais planes.

4See Noll W (1967), Materially uniform bodies with inhomogeneities, Archive for Rational Mechanics and Analysis 27,

1-32; Wang C-C (1967), On the geometric structure of simple bodies, Archive for Rational Mechanics and Analysis 27,

33-94; Bloom F (1979), Modern differential geometric techniques in the theory of continuous distributions of dislocations,

Springer; Epstein M and Elżanowski M (2007), Material inhomogeneities and their evolution, Springer.
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4.6.4 Singular dislocations and de Rham currents

If a collection of n independent one-forms is stipulated on a manifold B, it is possible to reproduce all

the results of the continuous theory of dislocations (including the role of the torsion tensor of a distant

parallelism). It would appear, therefore, that, apart from the fact that a dislocation can be associated to

a single family of Bravais planes, not much has been gained beyond the elegance of the dual formulation.

On the other hand, the power of this dual formulation resides in the ability of the theory of differential

forms to sustain a generalization that can encompass singular dislocations (as irregular as point defects)

as well as the smooth case. Such a generalization is provided by the concept of currents introduced by de

Rham in a now classic work.5 De Rham’s work is a generalization to differential forms of the notion of

distribution in analysis. A distribution is a linear functional in the space of C∞ functions with compact

support in Rn
. It comprises such well-known entities as the Dirac delta ‘function’ and its ’derivatives’.

In an imprecise way it can be said that a current is a differential form whose coefficients in a coordinate

system are distributions. A unified treatment of dislocations from this point of view can be found in a

recent paper,6
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